基于STM32单片机声源方向识别器设计与实现毕业设计论文.doc
《基于STM32单片机声源方向识别器设计与实现毕业设计论文.doc》由会员分享,可在线阅读,更多相关《基于STM32单片机声源方向识别器设计与实现毕业设计论文.doc(79页珍藏版)》请在沃文网上搜索。
1、摘要本科毕业设计(论文)基于STM32单片机声源方向识别器设计与实现摘要近年来,基于麦克风阵列的声源定位系统被广泛地应用于电话会议、视频会议、语音增强、助听器等系统中,因此受到了越来越多的关注,已经成为一大研究热点。在各种声源定位方法中,基于到达时延估计的双步定位法原理简单,运算量小,精度相对较高,有利于实时实现,因此它的应用也最为广泛,本文着重研究了该方法。 本文首先给出了麦克风阵列声源定位系统的硬件设计。该硬件电路实现了在一定的采样率下对多个麦克风通道进行同步采样。接下来,以STM32F103RBT6为硬件平台,设计了一个可以在二维平面内对声源进行实时定位的实验系统。STM32F103系列
2、丰富的外设配置,使得STM32系列微型控制器适合于多种应用场合。系统软件部分的核心算法采用了基于达到时延估计双步定位。 最后,对系统进行大量测试,实验结果表明,该系统硬件性能良好,软件算法实现简单,运算量小,精度较高,可适用于实时定位系统中。关键词麦克风阵列;实验估计;声源定位;STM32F103RBT6AbstractIn recent years, source localization system based on microphone array is being widely used in the videoconference, teleconference, speech e
3、nhancement, hearing aids. So it has been received a growing interest and become a very hot area. In various source location method, time difference of arrival (TDOA)based on the double step method is the most widely used, which has simple principle, low calculated amount, high precision, and can rea
4、lize real-time in practice. The paper also focuses on this method.Firstly, the hardware design of the source localization system based on microphone array is been presented. Multi-channel microphone signal can be sampled at a certain sampling frequency in the same time in this design. Secondly, base
5、d on the single chip Single-Chip microcomputer of STM32F103RBT6, standard and advanced communication interfaces. These features make the STM32F103 line microcontroller family suitable for a wide range of applications. The critical section of the system software is the double step sound source locati
6、on method based on time difference of arrival (TDOA).Finally, do a great amount of experiment test, the experiment all results show that the hardware performance of this is good, and the software localization algorithm has simple implementation, little computation and high accuracy, so it can be use
7、d in real time positioning system.KeywordsMicrophone array; sound source localization; Time delay estimation;STM32F103RBT673 目录目 录摘要II第1章 绪论11.1 课题背景及研究的目的和意义11.2 国内外研究现状51.3 本文主要工作及论文结构6第2章 声源定位系统的技术基础82.1 麦克风阵列声源定位系统整体结构82.2 STM32单片机简介92.3 KeilVision4MDK简介162.4 ISP下载器172.5 本章小结17第3章 声源定位算法研究193.1
8、声源定位算法概述193.2 时延估计算法203.3 对时延估计算法误差的分析223.4 对时延估计算法的改进223.5 本章小结23第4章 麦克风阵列声源定位系统整体硬件设计244.1 硬件系统电路图设计244.2 音频放大电路244.3 STM32外围电路254.4 串行通信接口294.5 本章小结31第5章 声源定位系统程序设计325.1 KeilVision4MDK建立工程文件325.2 A/D转换程序设计325.3 基本互相关函数计算时延程序设计345.4 本章小结35第6章 声源定位系统测试366.1 硬件电路数据采集测试366.2 对时延估计算法的测试386.3 本章小结39结论4
9、0参考文献42致谢错误!未定义书签。附录145附录2错误!未定义书签。附录3错误!未定义书签。附录4错误!未定义书签。附录565第1章 绪论第1章 绪论1.1 课题背景及研究的目的和意义声音是人类进行信息交流和认识外界的重要手段。对声音信号的处理研究伴随着声学的研究发展而进行。在信号与信息处理、计算机、数字通信、人工智能等先进技术的推动下,声音信号处理成为当今国内外的研究热点1。早在20世纪七八十年代,就已经开始将麦克风阵列应用于语音信号处理的研究中,进入90年代以来,基于麦克风阵列的语音信号处理算法逐渐成为一个新的研究热点。1985年Flanagan将麦克风阵列引入到大型会议的语音增强中,并
10、开发出很多实际产品。1987年Silverman将麦克风阵列引入到语音识别系统,1992年又将阵列信号处理用于移动环境下的语音获取,后来将其应用于说话人识别。1995年Flanagan在混响环境下用阵列信号处理对声音进行捕获。1996年Silverman和BrandstEin开始将其应用于声源定位中,用于确定和实时跟踪说话人的位置。近年来,基于传声器阵列的声源定位技术得到广泛的应用2。系统通过传声器阵列接收声源信息,然后进行数字信号处理,得到声源的位置信息。目前,基于传声器阵列的声源定位的主要应用有: (1)人机交互 近年来随着机器人技术的发展,人们希望智能化机器人可以服务于人们的日常生活,尤
11、其是为老年人的生活提供帮助,比如为老年人打扫卫生,或是为行动不便的老年人提供其他方面的协助。先前人们对智能机器人技术的发展主要是集中在移动系统和视觉系统上,缺少人机之间的交流和沟通,因此在人类与机器人之间建立一个有效的沟通方式是非常必要的3。无论对于专家和非专家人员来说,语音是人机交互最有前途的工具之一,因为语言能够提供双向的交互和不同标准的控制,所以机器人听觉系统的发展在家居机器人为人类服务方面提供了潜在的重要作用。机器人的听觉注意机制可以对外界的声音首先发起响应,进而引导机器人对声音目标进行观察,听觉系统还可以引起机器人的其他感官的注意,这种多信息融合技术已经成为一个重要的研究方向4,5。
12、用于人机交互的机器人听觉系统的核心构成便是声源定位技术6。当一个机器人的使用者和智能机器人进行语言的交流时,机器人能很快发现这个使用者或是找到这个声源的位置。除此之外,它还能在黑暗的环境中通过声音信号寻找说话者,或是在复杂的环境中寻找危险的声源7。在人机交互设备中,听觉系统水平的高低已经成为智能化水平的重要标志之一。图1-1 机器人利用声源定位确定声源的位置(2)军事领域 在战场上,声源定位技术在反狙击手方面运用广泛,用来探测火炮发射的精确位置。声源定位技术还为发现和跟踪隐身飞机提供了一种简单的方法,相比于红外和雷达设备,可降低设备的造价8。例如飞行在12000米高空的隐身飞机,以1.5马赫的
13、速度突防,发动机的声音需要40s的时间传播到布置在地面或海洋表面的麦克风阵列,这时隐身飞机刚飞过 20公里,只需根据麦克风阵列探测的隐身飞机的飞行轨迹就可以拦截隐身飞机。(3)视频、电话会议系统 目前大多数的视频、电话会议系统均使用了麦克风阵列技术,使用麦克风阵列技术不仅可以判定出当前发言人的位置,而且可以自动的将麦克风阵列的波束方向对准发言人的位置,屏蔽其他方位的噪声,提高了视频、电话会议系统的效果。(4)大型会场 大型会场一般采用固定位置的麦克风,限制了发言人的自由移动,佩戴无线麦克风也有诸多不便。而采用麦克风阵列的技术,通过对发言人进行声源定位,可以将阵列的波束方向对准发言人的位置,并随
14、着发言人的移动调整波束方向,非常方便。(5)助听器 基于麦克风阵列的助听器可以根据声源的位置,将阵列波束方向对准声源的方向,很好地抑制了环境噪声,提高了助听器的性能。(6)工业降噪 应用声源定位技术,我们还可以对机械设备的不同区域进行降噪处理。如图 1-2 和图 1-3 所示,则是采用麦克风阵列望远镜检测汽车噪声源,及不同部位的噪声能量的分析结果。图1-2 声波阵列望远镜图1-3 汽车不同部位的噪声能量分析(7)智能手机去噪 目前已有智能手机已经采用麦克风阵列技术进行去噪,一般选用多个麦克风分别对准不同的方向,通过阵列信号处理的技术,去除环境噪声,仅放大说话人的声音。除此之外,声源定位技术还被
15、广泛应用于电视电话会议和安防系统等领域。在电视电话会议上,声源定位系统可以将摄像头对准正在发言的人,使远方的与会人员也可以看见视频另一端的说话人,这样会使虚拟会议的真实感增强9。在光线昏暗的条件下,传统的视频监控对监控区域内的监控存在死角,声源定位技术不受光线条件的影响,可以弥补视频监控系统的不足,发现异常声源可以及时提醒监控人员。随着声源定位技术的发展,其应用领域将越来越广,更加接近人们的日常生活。在现有的银行监控系统中,主要运用的是视频监控,通过摄像机与录像机对监控场景的图像或视频进行采集和存储。但是其设备本身不具备对视频内容的分析判断能力,需要人工完成。由于这种单纯的人力监视受限于人体的
16、观察能力,使得系统存在监控漏洞。如果能够开发一种更加智能化的监控系统,弥补现有系统的不足,有着很大的实用价值。人类的判断分析能力之所以高,就是因为我们从外界得到的信息较多。通过视觉、听觉、嗅觉等等,综合判断必定比单纯的一种信息得到的结论更准确。因此,在监控系统中使用声源定位技术可以使系统更加智能化。即监控过程分两步进行,声源定位系统不断检测环境中的声音信号,若检测到有异常声音时,立即定位该声源,然后控制摄像机对声源所在区域进行视频采集,同时发出警报提醒监控人员。因此,这种视频采集结合声源定位的监控系统极大地提高了监控效率。在军事领域,声源定位技术也起着极其重要的作用。例如狙击手定位系统就是一种
17、声源定位系统,目标声源信号为狙击手开枪时步枪的膛口激波和弹丸飞行产生的冲击波10。定位系统通过接收这两种声波,确定狙击手的位置。目前已经研制成功的该类系统有:美军研制的“哨兵”、“安全”等单兵反狙击手探测定位系统。美国 BBN 公司开发的“枪弹定位器”声测系统。该系统采用 2 个传声器阵列测量弹丸飞行中的声激波对弹丸进行定位和分类,定位成功率达到90%。另外,试设想一下多媒体教室,若在传统的麦克风中置入声源定位系统,使得该麦克风不仅可以接收、扩大声音,而且可以对说话人的方位进行实时检测和跟踪,即麦克风始终对准讲话人的方向。这样就大大方便了讲话人的自由活动或交换。声音给人们带来了方便,丰富了人们
18、的生活。而对声源位置的确定能给大家有效的利用声音提供帮助。事实证明,声源定位系统是一个很有意义的研究课题,随着声源定位技术的发展,其应用领域将越来越广,越来越贴近人们的日常生活11。1.2 国内外研究现状声源定位技术有几十年的发展历程。其基本原理就是根据收到的音频信号,确定声源的位置。目前主要采用基于麦克风阵列的信号处理方法。该方法是在 1996 年,由 Silverman 和 Brandstein 两人首先将其应用于说话人位置识别的定位系统中的。随着传声器阵列的信号处理技术的迅猛发展,麦克风阵列的产品以其极大的优越性已经应用到社会生活的各个场合。国外对声源定位技术的研究起步较早,目前的研究成
19、果比也较多。主要应用于军事领域,如战场目标声音识别系统12、飞机探测系统、声探测预警系统13等。除军事领域外,其他领域的声源定位技术的研究成果也很多,如日本HONDA研究院研制的实时跟踪多声源的系统。该系统由两个麦克风阵列组成,分别为室内的麦克风阵列和嵌入机器人头部的麦克风阵列。这两个阵列分别采用基于加权延时累加波束成形法和自适应波束成形器法来定位多声源位置。加拿大魁北克的珊不勒凯大学机电学院研发的避障机器人,使用8元麦克风阵列采集声音,采用波束成形和粒子滤波方法实现声源的跟踪。近年来,国内的许多大学和研究所也对声源定位技术进行了研究。哈尔滨工程大学水声技术国家级重点实验室针对水下近场噪声源的
20、定位,研究了一种矢量阵宽带 MVDR 聚焦波束形成方法。该方法解决了“左右舷模糊”问题,提高了处理增益,及对实际水声信号的适用性14。湖南科技大学和中南大学机电工程学院对海底超声波微地形探测系统进行了研究15。安徽理工大学电气与信息工程学院,设计了一种智能视频监控系统。该系统综合应用了声音和光的信息实现定位,突破了传统监控系统监控范围的局限性,提高了监控系统的监控效率16。另外,如何实现低成本的小型声源定位系统已成为目前研究的一个热点。例如,移动机器人、智能车等声音定位控制系统。文献17设计了一套基于单片机的声音导引系统,该系统通过检测声音信号到达任意两个探测器的时间差实现移动声源方位的估计,
21、从而控制小车的运动方向,并引导小车到达指定位置。文献18介绍了一种用于移动机器人搜寻目标方向的声源定位系统。文献19设计了一套以 STM32 芯片为硬件的移动声源实时定位系统。1.3 本文主要工作及论文结构本文研究的主要内容是设计与实现基于麦克风阵列和STM32单片机的声源方向识别器。其中,包括麦克风阵列、音频放大电路的设计、A/D转换的电路设计及其相关程序的设计,声源定位算法的程序设计。但是考虑到时间不够充足这一实际情况,最后决定采用已完成的一套STM32单片机为核心的硬件电路作为实现声源定位的硬件系统。在最后对整个系统进行软硬联调,对系统进行大量声源定位实验,测试系统的精确程度以保证系统能
22、够应用于实际环境中。论文共分为六章,章节主要内容如下:第1章介绍声源定位背景及研究的目的和意义,相关应用以及国内外的研究现状。第2章主要介绍整个声源定位系统硬件基础知识。首先介绍STM32F103系列单片机的主要性能、特点以及主要参数。其次介绍了现有的3 类基本声源定位技术。最后简略介绍编程软件KeilVision4MDK的使用方法。第3章主要对声源定位算进行了介绍,包括当下集中主要的声源定位算法,时延估计算法中的基本互相关函数,对时延估计算法误差的分析和改进。第4章主要介绍基于麦克风阵列和STM3单片机的声源方向识别器硬件整体结构的设计,包括麦克风阵列几何结构的选择,音频放大电路的设计,ST
23、M32单片机的A/D转换电路的设计,以及各部分电路与单片机的连接方式。第5章主要介绍如何设计相关程序以实现STM32单片机的采样和A/D转换,声源定位算法的程序设计。第6章主要介绍使用已设计好的硬件系统结合声源定位算法算法进行多次声源定位实验并记录过程,进而对测试结果进行分析。分析系统误差并且提出改进的方法。最后为结论,主要介绍本次毕业设计工作的内容和取得的成果,设计过程中完成的声源定位系统的优点以及不足之处,并提出一些改进办法。第2章 声源定位系统的技术基础第2章 声源定位系统的技术基础2.1 麦克风阵列声源定位系统整体结构麦克风阵列声源定位系统主要包括四大部分:麦克风阵列部分、音频放大部分
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
20 积分
下载 | 加入VIP,下载更划算! |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 STM32 单片机 声源 方向 识别 设计 实现 毕业设计 论文
