毕业设计风力发电机英文文献翻译.doc
《毕业设计风力发电机英文文献翻译.doc》由会员分享,可在线阅读,更多相关《毕业设计风力发电机英文文献翻译.doc(12页珍藏版)》请在沃文网上搜索。
1、 附录一 英文文献Wind Energy Introduction1.1 Historical DevelopmentWindmills have been used for at least 3000 years, mainly for grinding grain or pumping water, while in sailing ships the wind has been an essential source of power for even longer. From as early as the thirteenth century, horizontal-axis win
2、dmills were an integral part of the rural economy and only fell into disuse with the advent of cheap fossil-fuelled engines and then the spread of rural electrification.The use of windmills (or wind turbines) to generate electricity can be traced back to the late nineteenth century with the 12 kW DC
3、 windmill generator constructed by Brush in the USA and the research undertaken by LaCour in Denmark. However, for much of the twentieth century there was little interest in using wind energy other than for battery charging for remote dwellings and these low-power systems were quickly replaced once
4、access to the electricity grid became available. One notable exception was the 1250 kW SmithPutnam wind turbine constructed in the USA in 1941. This remarkable machine had a steel rotor 53 m in diameter, full-span pitch control and flapping blades to reduce loads. Although a blade spar failed catast
5、rophically in 1945, it remained the largest wind turbine constructed for some 40 years (Putnam, 1948).Golding (1955) and Shepherd and Divone in Spera (1994) provide a fascinatinghistory of early wind turbine development. They record the 100 kW 30 m diameterBalaclava wind turbine in the then USSR in
6、1931 and the Andrea Enfield 100 kW 24 m diameter pneumatic design constructed in the UK in the early 1950s. In this turbine hollow blades, open at the tip, were used to draw air up through the tower where another turbine drove the generator. In Denmark the 200 kW 24 m diameter Gedser machine was bui
7、lt in 1956 while Electricite de France tested a 1.1 MW 35 m diameter turbine in 1963. In Germany, Professor Hutter constructed a number of innovative, lightweight turbines in the 1950s and 1960s. In spite of these technical advances and the enthusiasm, among others, of Golding at the Electrical Rese
8、arch Association in the UK there was little sustained interest in wind generation until the price of oil rose dramatically in 1973.The sudden increase in the price of oil stimulated a number of substantialGovernment-funded programmes of research, development and demonstration. In the USA this led to
9、 the construction of a series of prototype turbines starting with the 38 m diameter 100 kW Mod-0 in 1975 and culminating in the 97.5 m diameter 2.5 MW Mod-5B in 1987. Similar programmes were pursued in the UK, Germany and Sweden. There was considerable uncertainty as to which architecture might prov
10、e most cost-effective and several innovative concepts were investigated at full scale. In Canada, a 4 MW vertical-axis Darrieus wind turbine was constructed and this concept was also investigated in the 34 m diameter Sandia Vertical Axis Test Facility in the USA. In the UK, an alternative vertical-a
11、xis design using straight blades to give an H type rotor was proposed by Dr Peter Musgrove and a 500 kW prototype constructed. In 1981 an innovative horizontal-axis 3 MW wind turbine was built and tested in the USA. This used hydraulic transmission and, as an alternative to a yaw drive, the entire s
12、tructure was orientated into the wind. The best choice for the number of blades remained unclear for some while and large turbines were constructed with one, two or three blades. Much important scientific and engineering information was gained from these Government-funded research programmes and the
13、 prototypes generally worked as designed. However, it has to be recognized that the problems of operating very large Figure 1.1 1.5 MW, 64 m diameter Wind Turbine (Reproduced by permission of NEG MICON)wind turbines, unmanned and in difficult wind climates were often under- estimated and the reliabi
14、lity of the prototypes was not good. At the same time as the multi-megawatt prototypes were being constructed private companies, often with considerable state support, were constructing much smaller, often simpler,turbines for commercial sale. In particular the financial support mechanisms in Califo
15、rnia in the mid-1980s resulted in the installation of a very large number of quite small(100 kW) wind turbines. A number of these designs also suffered from various problems but, being smaller, they were in general easier to repair and modify. The so-called Danish wind turbine concept emerged of a t
16、hree-bladed,stall-regulated rotor and a fixed-speed, induction machine drive train. This decep-tively simple architecture has proved to be remarkably successful and has now been implemented on turbines as large as 60 m in diameter and at ratings of 1.5 MW. The machines of Figures 1.1 and 1.2 are exa
17、mples of this design. However, as the sizes of commercially available turbines now approach that of the large prototypes of the 1980s it is interesting to see that the concepts investigated then of variable-speed operation, full-span control of the blades, and advanced materials are being used incre
18、asingly by designers. Figure 1.3 shows a wind farm of direct-drive, variable-speed wind turbines. In this design, the synchronous generator is coupled directly to the aerodynamic rotor so eliminating the requirement for a gearbox. Figure 1.4 shows a more conventional, variable-speed wind turbine tha
19、t uses a gearbox, while a small wind farm of pitch-regulated wind turbines, where full-span control of the blades is used to regulate power, is shown in Figure 1.5. Figure 1.2 750 kW, 48 m diameter Wind Turbine, Denmark (Reproduced by permission of NEG MICON)Figure 1.3 Wind Farm of Variable-Speed Wi
20、nd Turbines in Complex Terrain (Reproduced by permission of Wind Prospect Ltd)Figure 1.4 1 MW Wind Turbine in Northern Ireland (Reproduced by permission of Renew-able Energy Systems Ltd) The stimulus for the development of wind energy in 1973 was the price of oil and concern over limited fossil-fuel
21、 resources. Now, of course, the main driver for use of wind turbines to generate electrical power is the very low C emissions (over the entire life cycle of manufacture, installation, operation and de-commissioning)Figure 1.5 Wind Farm of Six Pitch-regulated Wind Turbines in Flat Terrain (Reproduced
22、 by permission of Wind Prospect Ltd)and the potential of wind energy to help limit climate change. In 1997 the Commis-sion of the European Union published its White Paper (CEU, 1997) calling for 12 percent of the gross energy demand of the European Union to be contributed from renewables by 2010. Wi
23、nd energy was identified as having a key role to play in the supply of renewable energy with an increase in installed wind turbine capacity from 2.5 GW in 1995 to 40 GW by 2010. This target is likely to be achievable since at the time of writing, January 2001, there was some 12 GW of installed wind-
24、turbine capacity in Europe, 2.5 GW of which was constructed in 2000 compared with only 300 MW in 1993. The average annual growth rate of the installation of wind turbines in Europe from 1993-9 was approximately 40 percent (Zervos, 2000). The distribution of wind-turbine capacity is interesting with,
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10 积分
下载 | 加入VIP,下载更划算! |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 毕业设计 风力发电机 英文 文献 翻译