人脸识别系统设计毕业设计.docx
《人脸识别系统设计毕业设计.docx》由会员分享,可在线阅读,更多相关《人脸识别系统设计毕业设计.docx(30页珍藏版)》请在沃文网上搜索。
1、第1章 引 言1.1人脸识别技术的应用与难点人脸是自然界存在的一种特殊的、复杂的视觉模式,它包含着极其丰富的信息。首先,人脸具有一定的不变性和唯一性,人脸识别是人类在进行身份确认时使用的最为普遍的一种方式,其次,人脸图像还能提供一个人的性别、年龄、种族等有关信息。人类在人脸识别中所表现出来的能力是令人惊异的,但是让计算机能够识别人脸,却是非常困难的问题。迄今为止,人脸识别的认知过程和内在机理仍然是一个未解之谜,如何实现一个自动的人脸识别系统仍然是一个悬而未决的难题。 从上个世纪六十年代以来,随着计算机和电子技术的迅猛发展,人们开始利用计算机视觉和模式识别等技术对人脸识别进行研究。近年来,随着相
2、关技术的不断发展和实际需求的日益增加,人脸识别已经引起了越来越多的关注,成为了信息处理和人工智能等领域研究的热点之一,新的研究成果和实用系统也不断涌现。1.1.1 人脸识别技术的广泛应用一项技术的问世和发展与人类的迫切需求是密切相关的,飞速发展的社会经济和科学技术使得人类对安全(包括人身安全、隐私保护等)的认识越来越重视。人脸识别的一个重要应用就是人类的身份识别。一般来说,人类的身份识别方式分为三类:a.特殊物品,包括各种证件和凭证,如身份证、驾驶执照、房门钥匙、印章等;b.特殊知识,包括各种密码、口令和暗号等;c.人类生物特征,包括各种人类的生理和行为特征,如人脸、指纹、手形、掌纹、虹膜、D
3、NA、签名、语音等。前两类识别方式属于传统的身份识别技术,其特点是方便、快捷,但致命的缺点是安全性差、易伪造、易窃取。特殊物品可能被丢失、偷盗和复制,特殊知识容易被遗忘、混淆和泄露。相比较而言,由于生物特征是人的内在属性,具有很强的自身稳定性和个体差异性,因此生物特征是身份识别的最理想依据。基于以上相对独特的生物特征,结合计算机技术,发展了众多的基于人类生物特征的身份识别技术,如NDA识别技术、指纹识别技术、虹膜识别技术、语音识别技术和人脸识别技术等。表1-1为各种生物识别技术的综合比较。表1-1 各种生物特征识别技术的综合比较生物识别技术在上个世纪己经有了一定的发展,其中指纹识别技术己经趋近
4、成熟,但人脸识别技术的研究目前还处于起步阶段。指纹、虹膜、掌纹等识别技术都需要被识别者的配合,有的识别技术还需要添置复杂昂贵的设备。人脸识别则可以用已有的照片或是摄像头远距离捕捉图像,无须特殊的采集设备,系统的成本低。并且自动人脸识别可以在当事人毫无察觉的情况下即完成身份确认识别工作,这对反恐怖活动等有非常重大的意义。由于人脸识别技术具有如此之多的优势,因此它的应用前景非常广阔,已成为最具潜力的生物特征识别技术之一。本文将人脸识别技术的各种应用及其特点总结在表1-2中。表1-2 人脸识别技术的应用 人脸识别最初的应用源于公安部门关于罪犯照片的存档管理和刑侦破案。现在该技术在安全系统、商业领域和
5、日常生活中都有很多应用,主要有以下几类应用: 1.刑侦破案。当公安部门获得罪犯的照片后,可以利用人脸识别技术,在存储罪 犯照片的数据库中找出最相像的人作为嫌疑犯,极大的节省了破案的时间和人力物力。还有一种应用就是根据目击证人的描述,先由专业人员画出草图,然后用此图到库里去找嫌疑犯。罪犯数据库往往很大,由几千幅图像组成。如果这项搜索工作由人工完成,不仅效率低,而且容易出错,因为人在看了上百幅人脸图像后,记忆力会下降,而由计算机来完成则不会出现此问题。 2.证件验证。身份证、驾驶执照以及其他很多证件上都有照片;现在这些证件多由人工验证完成。如果应用人脸识别技术,这项工作就可以交给机计算机完成,从而
6、实现自动化及智能管理。当前普遍使用的另一类证件是用符号或者条形码标记的,比如信用卡。这类卡的安全性比较低,可能遗失、被窃取,使用场合(比如自动提款机)的安全性也比较差。如果在这类卡上加上人脸的特征信息,则会大大改善其安全性能。 3.入口控制。需要入口控制的范围很广,它可以是重要人物居住的住所、保存重要信息的单位,只要人类觉得安全性比较重要的地点都可以进行入口控制,比较常用的检查手段是核查证件。人员出入频繁时,保安人员再三检查证件是很麻烦的,而且证件安全性也不高。在一些保密要求非常严格的部门,除了证件外,已经使用了生物特征识别手段,如指纹识别、掌纹识别、虹膜识别和语音识别等。人脸识别与这些技术相
7、比,具有直接、方便和友好的特点。当前计算机系统的安全管理也备受重视,通常使用由字符和数字组成的口令(Password)进行使用者的身份验证,但口令可能被遗忘,或被破解,如果将人脸作为口令,则既方便又安全。 4.视频监控。在银行、公司、公共场所等处设有24小时的视频监控,如何对视频图像进行筛选分析,就需要用到人脸检测、跟踪和识别技术。 除了以上应用外,人脸识别技术还可以用于视频会议、机器人的智能化研究等方面。尤其从美国9.11事件后,人的身份识别问题更是提升到了国家安全的角度,如何利用人脸信息迅速确定一个人的身份成了各个国家重点研究的技术。1.1.2人脸识别技术的难点 虽然人类可以毫不困难地根据
8、人脸来辨别一个人,但是利用计算机进行完全自动的人脸识别,仍存在许多困难。人脸模式的差异性使得人脸识别成为一个非常困难的问题,表现在以下方面: 1.人脸表情复杂,人脸具有多样的变化能力,人的脸上分布着五十多块面部肌肉,这些肌肉的运动导致不同面部表情的出现,会造成人脸特征的显著改变; 2.人脸随年龄而改变,随着年龄的增长,皱纹的出现和面部肌肉的松弛使得人脸的结构和纹理都将发生改变; 3.人脸有易变化的附加物,例如改变发型,蓄留胡须或者佩戴帽子和眼镜等饰物; 4.人脸特征遮掩,人脸全部、部分遮掩将会造成错误识别; 5.人脸图像的畸变,由于光照、视角、摄取角度不同,可能会造成图像的灰度畸变、角度旋转等
9、,降低了图像质量,增大了识别难度。 所以很难从有限张人脸图像中提取出反映人脸内在的、本质的特征。另外人脸识别还涉及模式识别、图像处理、计算机视觉、生理学和心理学等学科领域。这诸多因素使得人脸识别至今仍是一个有待深入研究,极富挑战性的课题。同时一个成功的、具有商用价值的快速的人脸识别系统将会给社会带来极大的影响。1.2人脸识别技术的发展与现状 人脸识别的研究可以追溯到20世纪60年代末,最早的研究见于文献。Bledsoe以人脸特征点的间距、比率等参数为特征,建成了一个半自动的人脸识别系统。人脸识别的发展大致经过了三个阶段,其中伴随发展了多样的人脸识别技术。1.2.1人脸识别技术发展的三个阶段 第
10、一阶段一非自动识别阶段:主要研究如何提取人脸识别所需的特征。通过简单的语句描述人脸数据库成为待识别人脸设计逼真的摹写来提高面部识别率。这是需要手工干预的阶段。此阶段以Bertillon、Allen和Parke为代表。在Bertillon系统中,用了一个简单的语句与数据库中的某一张脸相联系,同时与指纹识别相结合,提供了一个较强的识别系统。为了提高面部识别率,Allen为待识别人脸设计了一种有效逼真的摹写,Parke则用计算机实现了这一想法,并且产生了较高质量的人脸灰度图模型。在此阶段,识别过程全部依赖于操作人员,所以不是一种自动识别的系统。 第二阶段一人机交互阶段:这一阶段虽然实现了一定的自动化
11、,但还需要操作员的某些先验知识,仍然不是一个完全自动的识别系统。此阶段的代表性工作有:Goldstion、Harmon和Lesk等人用几何特征参数来表示人脸正面图像。他们采用21维特征矢量表示人脸面部特征,并设计了基于这一表示法的识别系统。Kaya和Kobayashi则采用了统计识别的方法,用欧氏距离来表示人脸特征,例如嘴和鼻子之间的距离,嘴唇的高度,两眼之间的距离等。更进一步的,T.Kanad设计了快速且有一定知识引导的半自动回溯识别系统,创造性的运用积分投影法从单幅图像上计算出一组脸部特征参数,再利用模式分类技术与标准人脸相匹配。Kanad的系统实现了快速、实时的处理,是一个很大的进步。总
12、的来说,上述方法都需要利用操作员的某些先验知识,始终摆脱不了人的干预。 第三阶段一自动识别阶段:这一阶段真正实现了机器自动识别,产生了众多人脸识别方法,出现了多种机器全自动识别系统。近十余年来,随着高速度、高性能计算机的发展,人脸识别方法有了较大的突破,提出了多种机器全自动识别系统。近年来,人脸识别技术研究也非常活跃,除了基于K一L变换的特征脸方法与奇异值特征为代表的代数特征方法取得了发展外,人工神经网络、隐马尔可夫模型小波变换等也在人脸识别研究中得到了广泛的应用,而且出现了不少人脸识别的新方法。本文将在1.3节介绍人脸识别的主要内容与方法。1.2.2国内外发展现状目前,国外对人脸识别问题的研
13、究比较多,其中比较著名的有MTI、CMU、Cornell和Rockfeller等,MPEG标准组织也已经建立了专门的人脸识别草案小组。国际上发表的相关论文数量也大幅度增长,EIEE的著名国际会议,如EIEE International Conference on Automatic Face and Gesture Recognition、 International Conference on Image Processing、Conference on Computer Vision and Pattern Recognition等,每年都有大量关于人脸识别的论文。截至2005年3月,EI
14、EE/IEE全文数据库中收录的关于“face”的文章8916篇,其中有关“face recognition”的3280篇,约占36.8%,并且每年的文献呈急剧上升趋势。同样在工程索引El中,至2005年3月,共有81657篇有关“face”的文献,数目是惊人的,并且2000年后快速增长。国内对人脸识别领域的研究起步较国外晚,但近十年来呈现飞速发展,据中国期刊网统计,1996年至2005年3月,有关“人脸”的文献1467篇,其中人脸识别领域的文章494篇,并且再近几年获得快速增长,也预示人脸识别领域得到快速发展。目前国内大部分高校有人从事人脸识别相关的研究,其中技术比较先进的有中科院自动化所、清
15、华大学、浙江大学等。1.3人脸识别的主要方法 自动人脸识别技术(AFR)就是利用计算机技术,根据数据库的人脸图像,分析提取出有效的识别信息,用来“辨认”身份的技术。人脸识别技术的研究始于六十年代末七十年代初,其研究领域涉及图像处理、计算机视觉、模式识别、计算机智能等领域,是伴随着现代化计算机技术、数据库技术发展起来的综合交叉学科。1.3.1人脸识别的视觉机理近几年的研究表明,人类视觉数据处理是多层次的过程,其中最低层的视觉过程(视网膜功能)起到信息转储作用,即将大量图像数据转换为较为抽象的信息,这一任务由视网膜中的两类细胞完成:低层次的细胞对空间的响应与小波变换作用类似,高层次的细胞则依据低层
16、次细胞的响应,而作出具体的线、面乃至物体模式的响应。这表明在视觉处理过程中,神经元并不是随便的、不可靠的把视觉图像的光照强度投射到感觉中枢,它们可以检测模式单元,区分物体的深度,排除无关的变化因素,并组成一个令人感兴趣的层次结构。人脸识别不仅有着以上普通视觉过程的特点,而且具有以下独特之处。 1.人脸识别是大脑中一个特有的过程。针对人脸识别,大脑中存在一个专门的处理过程; 2.在人脸感知与识别过程中,局部特征与整体特征均起作用。若存在明显的局部特征,整体特征将不起作用; 3.不同的局部特征作用对识别的贡献也不同。在正面人脸图像中,头发、人脸轮廓、眼睛以及嘴巴对识别和记忆有着重要影响,鼻子的作用
17、则不是很重要。但在侧面人脸识别中,鼻子对特征点的匹配很有作用。通常来讲人脸的上部比下部对识别作用更大些; 4.不同空间频率上信息的作用不同。低频信息代表了整体的描述,高频信息包含了局部的细节。对于性别的判断,仅利用低频信息就足够了,对于身份识别没有高频信息就无法完成; 5.光照对视觉有影响。有实验表明,从人脸底部打光会导致识别困难; 6.动态信息比静态信息更利于识别。研究还发现,对熟悉的人脸,人类的识别能力在动态场景中要高于静态场景; 7.十岁以下的儿童识别人脸较多的采用显著特征,而较少的使用整体分析; 8.不同的种族。性别的人脸识别的难易程度不同,这可能因为不同类型的人脸图像具有不同的特征;
18、 9.面部表情的分析与人脸识别并行处理。通过对脑部受损的病人研究表明,表情的分析与识别虽有联系,但总体来说是分开处理的。 人脸识别是一种复杂的信息处理任务,它的研究涉及计算机技术、心理学和神经生理学。视觉机理、心理学和神经生理学的研究结果无疑将非常有益于人脸识别技术的发展,这些结论对于设计有效的识别方法起到了一定启发作用。但除少数文献外24,机器识别人脸的研究还是独立于心理学和神经生理学的研究的。1.3.2人脸识别系统的组成 在人脸识别技术发展的几十年中,研究者们提出了多种多样的人脸识别方法,但大部分的人脸识别系统主要由三部分组成:图像预处理、特征提取和人脸的分类识别。一个完整的自动人脸识别系
19、统还包括人脸检测定位和数据库的组织等模块,如图1-1。其中人脸检测和人脸识别是整个自动人脸识别系统中非常重要的两个技术环节,并且相对独立。下面分别介绍这两个环节。图1-1人脸识别系统框图人脸检测与定位检测图像中是否有人脸,若有,将其从背景中分割出来,并确定其在图像中的位置。在某些可以控制拍摄条件的场合,如警察拍罪犯照片时将人脸限定在标尺内,此时人脸的定位很简单。证件照背景简单,定位也比较容易。在另一些情况下,人脸在图像中的位置预先是未知的,比如在复杂背景下拍摄的照片,这时人脸的检测与定位将受以下因素的影响: 1.人脸在图像中的位置、角度、不固定尺寸以及光照的影响; 2.发型、眼镜、胡须以及人脸
20、的表情变化等; 3.图像中的噪声等。特征提取与人脸识别 特征提取之前一般需要做几何归一化和灰度归一化的工作。前者是指根据人脸定位结果将图像中的人脸变化到同一位置和大小;后者是指对图像进行光照补偿等处理,以克服光照变化的影响,光照补偿能够一定程度的克服光照变化的影响而提高识别率。提取出待识别的人脸特征之后,即可进行特征匹配。这个过程是一对多或者一对一的匹配过程,前者是确定输入图像为图像库中的哪一个人(即人脸识别),后者是验证输入图像的人的身份是否属实(即人脸验证)。 以上两个环节的独立性很强。在许多特定场合下人脸的检测与定位相对比较容易,因此“特征提取与人脸识别环节”得到了更广泛和深入的研究。近
21、几年随着人们越来越关心各种复杂的情形下的人脸自动识别系统以及多功能感知研究的兴起,人脸检测与定位才作为一个独立的模式识别问题得到了较多的重视。本文主要研究人脸的特征提取与分类识别的问题。1.3.3主要的人脸识别方法 人脸识别技术作为模式识别领域的一个研究热点,每年都有许多相应的研究成果发表,并且涌现出各种各样的识别方法,可以说信息处理领域的各种新方法的研究和算法的改进都尝试在人脸识别中得到应用。文献对近十年来人脸识别领域取得的成果进行了总结。人脸识别方法的分类,根据研究角度的不同,可以有不同的分类方法,这是研究人脸识别方法首先遇到的问题。本文在深入研究国内外人脸识别技术的发展和研究成果的同时,
22、将已有的不同的分类方法做一个比较,目的是希望能从不同角度认识人脸识别问题,在较全面的了解各种方法优缺点的基础上,给本文的人脸识别方法提供研究方向。 根据输入图像中人脸的角度,人脸识别技术可分为基于正面、侧面、倾斜人脸图像的人脸识别。由于实际情况的要求,对人脸正面模式的研究最多,这也是本文的研究内容。 根据图像来源的不同,人脸识别技术可分为两大类:静态人脸识别和动态人脸识别。静态人脸识别,即人脸来源为稳定的二维图像如照片。如果人脸的来源是一段视频图像,则人脸识别就属于动态人脸识别。在头部运动和表情变化状态下的人脸识别都可以看作动态人脸识别,如视频监视中的人脸识别。动态人脸识别具有更大的难度:首先
23、,视频输出的图像质量较差:其次,背景较复杂,目前对动态人脸识别的研究还局限于简单背景,较少人物的情况,对静态人脸识别的研究比较多。本文的研究也是基于静止图像的。 根据人脸识别技术的发展历史,人脸识别方法大致可分为基于几何特征的人脸识别方法、基于模板匹配的人脸识别方法和基于模型的人脸识别方法。a.基于几何特征的人脸识别方法这是人脸识别技术发展中,应用最早的方法。该方法是通过提取人脸的几何特征,包括人脸部件的归一化的点间距离、比率以及人脸的一些特征点,如眼角、嘴角、鼻尖等部位所构成的二维拓扑结构进行识别的方法。所构造的几何特征既要清晰区分不同对象人脸的差异,又要对光照背景条件不敏感,常规的几何特征
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
20 积分
下载 | 加入VIP,下载更划算! |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 识别 系统 设计 毕业设计
