小学数学校本教材.doc
《小学数学校本教材.doc》由会员分享,可在线阅读,更多相关《小学数学校本教材.doc(51页珍藏版)》请在沃文网上搜索。
1、目 录第一部分 读一读第一讲 中国古代数学家刘徽.2第二讲 法国数学家勒内笛卡尔.5第二部分 算一算第三讲 速算与巧算.8第三部分 想一想第四讲 平面图形的面积(1)14第五讲 平面图形的面积(2)16第六讲 平面图形的面积(3).18第七讲 逻辑推理(1)20第八讲 逻辑问题(2)29第九讲 列方程解应用题.35第十讲 行程问题.41第一讲 中国古代数学家刘徽刘徽 - 简介刘徽九章算术刘徽(生于公元250年左右),是中国数学史上一个非常伟大的数学家,在世界数学史上,也占有杰出的地位他的杰作九章算术注和海岛算经,是我国最宝贵的数学遗产。九章算术约成书于东汉之初,共有246个问题的解法。在许多方
2、面:如解联立方程,分数四则运算,正负数运算,几何图形的体积面积计算等,都属于世界先进之列,但因解法比较原始,缺乏必要的证明,而刘徽则对此均作了补充证明。在这些证明中,显示了他在多方面的创造性的贡献他是世界上最早提出十进小数概念的人,并用十进小数来表示无理数的立方根。在代数方面,他正确地提出了正负数的概念及其加减运算的法则;改进了线性方程组的解法在几何方面,提出了割圆术,即将圆周用内接或外切正多边形穷竭的一种求圆面积和圆周长的方法他利用割圆术科学地求出了圆周率3.14的结果。他用割圆术,从直径为2尺的圆内接正六边形开始割圆,依次得正12边形、正24边形,割得越细,正多边形面积和圆面积之差越小,用
3、他的原话说是“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣。”他计算了3072边形面积并验证了这个值刘徽提出的计算圆周率的科学方法,奠定了此后千余年中国圆周率计算在世界上的领先地位。刘徽在数学上的贡献极多,在开方不尽的问题中提出“求徽数”的思想,这方法与后来求无理根的近似值的方法一致,它不仅是圆周率精确计算的必要条件,而且促进了十进小数的产生;在线性方程组解法中,他创造了比直除法更简便的互乘相消法,与现今解法基本一致;并在中国数学史上第一次提出了“不定方程问题”;他还建立了等差级数前n项和公式;提出并定义了许多数学概念:如幂(面积);方程(线性方程组);正负数等等刘徽还提
4、出了许多公认正确的判断作为证明的前提。他的大多数推理、证明都合乎逻辑,十分严谨,从而把九章算术及他自己提出的解法、公式建立在必然性的基础之上虽然刘徽没有写出自成体系的著作,但他注九章算术所运用的数学知识实际上已经形成了一个独具特色、包括概念和判断、并以数学证明为其联系纽带的理论体系刘徽在割圆术中提出的割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣,这可视为中国古代极限观念的佳作海岛算经一书中,刘徽精心选编了九个测量问题,这些题目的创造性、复杂性和富有代表性,都在当时为西方所瞩目刘徽思想敏捷,方法灵活,既提倡推理又主张直观他是我国最早明确主张用逻辑推理的方式来论证数学命题的人刘徽
5、的一生是为数学刻苦探求的一生他虽然地位低下,但人格高尚他不是沽名钓誉的庸人,而是学而不厌的伟人,他给我们中华民族留下了宝贵的财富。第二讲 法国数学家勒内笛卡尔勒内笛卡尔 勒内笛卡尔(Rene Descartes,15961650),著名的法国哲学家、科学家和数学家。 笛卡尔常作笛卡儿,1596年3月31日生于法国安德尔-卢瓦尔省笛卡尔-1650年2月11日逝于瑞典斯德哥尔摩)。 他对现代数学的发展做出了重要的贡献,因将几何坐标体系公式化而被认为是解析几何之父。他还是西方现代哲学思想的奠基人,是近代唯物论的开拓者提出了“普遍怀疑”的主张。他的哲学思想深深影响了之后的几代欧洲人,开拓了所谓“欧陆理
6、性主义”哲学。人物简介笛卡尔出身于一个地位较低的贵族家庭,父亲是布列塔尼议会的议员。1岁多时母亲患肺结核去世,而他也受到传染,造成体弱多病。母亲去世后,父亲移居他乡并再婚,而把笛卡尔留给了他的外祖母带大,自此父子很少见面,但是父亲一直提供金钱方面的帮助,使他能够受到良好的教育。 在他8岁时笛卡尔就进入拉夫赖士(La Flche)的耶稣英语会学校接受教育,受到良好的古典学以及数学训练。1613年到普瓦捷大学学习法律,1616年毕业。毕业后笛卡尔一直对职业选择不定,又决心游历欧洲各地,专心寻求“世界这本大书”中的智慧。因此他于1618年在荷兰入伍,随军远游。 笛卡尔对数学的兴趣就是在荷兰当兵期间产
7、生的。一次他看到军营公告栏上用佛莱芒语写的数学问题征答引起了兴趣,并且让一位他当兵的朋友,进行了翻译。他的这位朋友在数学和物理学方面有很高造诣,很快成为了他的老师。4个月后,他写信给这位朋友,“你是将我从冷漠中唤醒的人.”,并且告诉他,自己在数学上有了4个重大发现。可惜的是这些发现现在已经无从知道了。 26岁时,笛卡尔变卖掉父亲留下的资产,用4年时间游历欧洲,其中在意大利住了2年,随后定居巴黎。 1621年笛卡尔退伍,并在1628年移居荷兰,在那里住了20多年。在此期间,笛卡尔专心致力于哲学研究,并逐渐形成自己的思想。他在荷兰发表了多部重要的文集,包括了方法论、形而上学的沉思(Mditatio
8、ns mtaphysiques)和哲学原理(Les Principes de la philosophie)等。 1649年笛卡尔受瑞典女王之邀来到斯德哥尔摩,但不幸在这片“熊、冰雪与岩石的土地”上得了肺炎,并在1650年2月去世。1663年他的著作在罗马和巴黎被列入禁书之列。1740年,巴黎才解除了禁令,那是为了对当时在法国流行起来的牛顿世界体系提供一个替代的东西。 第三讲 速算与巧算一、知识要点:(一)四则运算的定律、性质、法则是进行速算与巧算的重要依据。1、利用运算定律使计算简便。2、利用运算顺序的改变使计算简便。3、利用运算法则使计算巧妙。(二)转化是速算与巧算的主要技巧。1、当一个数
9、接近整十、整百、整千的时候,将其转化为整十、整百、整千的数,计算比较简便。2、利用数的分解或拆数,转化后巧算。3、改变计算方法(变加为减,变减为加,变乘为除,变除为乘)使计算简便。(三)认真观察算式及数的特征,剖析数于数之间的关系,是灵活的选择和合理运用计算技巧的主要方法。二、例题精讲例1:(凑整法) 计算下面各题。(1)、5.82.320.684.2 (2)、1999199.919.991.999(3)、12.593.245.76(4)、8.17.88.28.47.97.6【思路点拨】 (1)5.8与4.2刚好凑成10,2.32与0.68刚好凑成3,这样凑整可以使计算简便。(2)1999接近
10、2000,其余各加数也分别接近一个整数,可先把各加数看作与它接近的整数。再把多加的那部分减去。(3)3.24与5.76的和是整数9,可以运用减法运算的性质把原式变为12.59(3.245.76),这样计算就简便了。(4)算式中的6个数都接近8,可以用8作为基准数,先求出6个8的和,再加上比8大的数中少加的部分,减去比8小的数中多加的部分。也可以运用凑整法。 例2:(分解法)计算下面各题(1)185.5 (2)8.881.25 (3)34.70.25(4)2381.25 (5)0.2512.53.2 【思路点拨】(1) 运用分解法巧算。把18分解为92,然后运用乘法结合律,把25.5结合积为11
11、,最后求出9与11的积。(2)把8.88分解为81.11,然后运用乘法结合律。(3)因为40.25=1,所以一个数乘0.25,就相当于这个数除以4.(4)因为81.25=10,所以一个数除以1.25,相当于这个数除以10,再乘8,即先把小数点向左移动一位,再乘8.(5)把3.2分解为40.8,再运用乘法结合律 。例3:计算(1)124.68324.68524.68724.68924.68(2)5795.57955.795579.5【思路点拨】(1)可运用拆分法巧算。把每一个加数都拆分为一个整数和一个小数的和,可以使计算简便。(2)运用改变运算顺序法使计算简便。,先求出579.5除以5.795的
12、商得100,然后再求出5795.5795 100的积。例4:计算下面各题。(1)1990198.91989198.8 (2)2.250.162640.02255.22.250.22520 【思路点拨】(1)利用扩缩法巧算。根据积的变化规律:一个因数扩大若干倍,另一个因数缩小相同的倍数,积不变的道理,可以把被减数写成1991989,然后利用乘法分配律巧算。(2)同样利用扩缩法简便计算,注意选择最佳方案。例5:计算:(10.280.84)(0.280.840.66)(10.280.840.66) (0.280.84) 【思路点拨】可以利用设数法解题。整个式子是乘积之差的形式,两个乘积斗的构成很有规
13、律:如果把 10.280.84用字母A表示,把 0.280.84用字母B表示,原式就可以变成A(B0.66)(A0.66) B。在运用乘法分配律使计算简便。 例6:计算 4.820.590.411.590.3235.9【思路点拨】先改变原运算顺序(加法交换律),先求出4.820.59与0.3235.9的差,可运用扩缩法把0.3235.9写成3.235.9,后运用乘法分配律计算,然后再加上0.411.59,再次运用乘法分配律巧算。例7:计算654321123456654322123455.【思路点拨】观察算式中数的特点,发现被减数中的两个因数分别比减数中的两个因数少1和多1,即654321比65
14、4322少1,123456比123455多1,可以利用乘法分配律简算。解:654321123456654322123455=654321(1234551) (6543211)123455=654321123455654321654321123455123455=654321123455=530866例8:计算19981999199919991999199819981998【思路点拨】可以运用数的分解和乘法分配律简算。因为abab=ab101,abcabc=abc1001,所以199919991999=1999100010001,199819981998=1998100010001.这样被减数和
15、减数都有相同因数100010001,就可以运用乘法分配律进行简算了。解: 19981999199919991999199819981998= 1998199910001000119991998100010001=0例9:计算(1351999) (2461998) 【思路点拨】根据减法的性质,将原式拆开后,在配对组合,进行等量变形。即(32)为一组,(54)为一组(19991998)为一组,这样每组的差都是1,共分为(19982)组,所以结果为1000.当然本题也可以运用等差数列求和的方法进行计算。例10:计算1009998979695949387654321.【思路点拨】本题按顺序计算太繁,观
16、察算式的特点,发现每两个数相加后,又会减去两个数,我们可以考虑把它们四个数分为一组,每组结果都是4,共分为1004=25组。所以结果是425=100.三、同步练习计算下面各题(1) 0.1250.2532 (2)164.5 (3) 0.251.2522.4(4)0.90.990.9990.99990.99999 (5)(7235735728)(5174) (6)9898989899999999101010111111111 (7)3.146.54.53.143.14(8)12403.8124511.2414007609.60.76700(9)1(23) (34)(45) (19992000)
17、1234569899100100(10)(2582000) (1471999) 20112012201220112011201120122012(11)123456789101112131415161985198619871988198919901991199219931994第四讲 平面图形的面积(1)一、例题精讲 例1 已知平行四边形的面积是28平方厘米,求阴影部分的面积。 5厘米4厘米【思路点拨】 技巧4厘米既是平行四边形的高,也是阴影三角形的高,平行四边形的面积是28平方厘米,它的底为284=7(厘米),平行四边形的底减去5厘米就是三角形的底,7-5=2(厘米)。根据三角形的面积公式直
18、接求出阴影部分的面积。 的面积最直接的方法是利用计算公式直接求阴影面积;还可以用总面积减去空白面积求得阴影部分面积。这两种是最常用最简便的方法。二:同步精练15厘米1.下面的梯形中,阴影部分的面积是150平方厘米,求梯形的面积。25厘米5厘米2已知平行四边形的面积是48平方厘米,求阴影部分的面积。6厘米3如果用铁丝围成如下图一样的平行四边形,需要用铁丝多少厘米?(单位:厘米)9 12 第五讲 平面图形的面积(2)一、例题精讲 例2下图中甲和乙都是正方形,求阴影部分的面积。(单位:厘米)C46BEFAG乙甲【思路点拨】图中的阴影部分是一个三角形,它的三条边的长都不知道,三条边上的高也不知道。所以
19、,无法用公式计算出它的面积。 仔细观察本题的图,我们可以发现,如果延长GA和FC,它们会相交(设交点为H),这样就得到长方形GBFH(如下图),它的面积很容易求,而长方形GBFH中除阴影部分之外的其他三部分(AGB、BFC及AHC)的面积都能直接求出。二、同步练习1、求下图中阴影部分的面积。(单位:厘米)43432、求下图中阴影部分的面积。(单位:厘米)8855第六讲 平面图形的面积(3)一、例题精讲 例3 如图所示:,甲三角形的面积比乙三角形的面积大6平方厘米,求CE的长度。4厘米ADEF乙BC甲4厘米【思路点拨】 题目中告诉我们,甲三角形的面积比乙三角形的面积大6平方厘米,即甲-乙=6(平
20、方厘米),而甲和乙分别加上四边形ABCF后相减的结果还是6平方厘米,即:甲-乙=6(平方厘米)(甲+四边形ABCF)-(乙+四边形ABCF)=6(平方厘米)即:正方形ABCD - ABE=6(平方厘米)这就是说正方形ABCD的面积比三角形ABE的面积大6平方厘米。用正方形的面积减去6就得到三角形ABE的面积,再用三角形的面积乘以2再除以AB,就得到BE的长度,从而求出CE的长度。同步练习 1、四边形ABCD是一个长为10厘米,宽6厘米的长方形,三角形ADE的面积比三角形CEF的面积大10平方厘米。求CF的长是多少厘米?DACEBFECABFD2、正方形ABCD的边长是12厘米,已知DE是EC长
21、度的2倍,求:(1)三角形DEF的面积。(2)CF的长。 第七讲:逻辑推理(1)一、知识要点四年级已经学习过用列表法和假设法解答逻辑推理问题。从广义上说,任何一道数学题,任何一个思维过程,都需要逻辑分析、判断和推理。我们这里所说的逻辑问题,是指那些主要不是通过计算,而是通过逻辑分析、判断和推理,得出正确结论的问题。逻辑推理必须遵守四条基本规律:(1)同一律。在同一推理过程中,每个概念的含义,每个判断都应从始至终保持一致,不能改变。(2)矛盾律。在同一推理过程中,对同一对象的两个互相矛盾的判断,至少有一个是错误的。例如,“这个数大于8”和“这个数小于5”是两个互相矛盾的判断,其中至少有一个是错的
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10 积分
下载 | 加入VIP,下载更划算! |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 小学 数学 校本 教材