24G射频低噪声放大器.doc
《24G射频低噪声放大器.doc》由会员分享,可在线阅读,更多相关《24G射频低噪声放大器.doc(68页珍藏版)》请在沃文网上搜索。
1、 摘 要近年来,以电池作为电源的电子产品得到广泛使用,迫切要求采用低电压的模拟电路来降低功耗,所以低电压、低功耗模拟电路设计技术正成为研究的热点。本文主要讨论电感负反馈cascode-CMOS-LNA(共源共栅低噪声放大器)的噪声优化技术,同时也分析了噪声和输入同时匹配的SNIM技术。以噪声参数方程为基础,列出了简单易懂的设计原理。为了实现低电压、低噪声、高线性度的设计指标,在本文中使用了三种设计技术。第一,本文以大量的篇幅推导出了一个理想化的噪声结论,并使用Matlab分析了基于功耗限制的噪声系数,取得最优化的晶体管尺寸。第二,为了实现低电压设计,引用了一个折叠式的共源共栅结构低噪声放大器。
2、第三,通过线性度的理论分析并结合实验仿真的方法,得出了设计一个高线性度的最后方案。另外,为了改善射频集成电路的器件参数选择的灵活性,在第四章中使用了一种差分结构。所设计的电路用CHARTER公司 0.25m CMOS 工艺技术实现,并使用Cadence的spectre RF 工具进行仿真分析。本文使用的差分电路结构只进行了电路级的仿真,而折叠式的共源共栅电路进行了电路级的仿真、版图设计、版图参数提取、电路版图一致性检查和后模拟,完成了整个低噪声放大器的设计流程。折叠式低噪声放大器的仿真结果为:噪声系数NF为1.30dB,反射参数S11、S12、S22分别为 -21.73dB、-30.62dB、
3、-23.45dB,正向增益S21为 14.27dB,1dB压缩点为-12.8dBm,三阶交调点IIP3 为0.58dBm。整个电路工作在1V电源下,消耗的电流为8.19mA,总的功耗为8.19mW。所有仿真的技术指标达到设计要求。关键字:低噪声放大器;噪声系数;低电压、低功耗;共源共栅;噪声匹配 ABSTRACTIn recent years, electronics with battery supply are widely used, which cries for adopting low voltage analog circuits to reduce power consumpt
4、ion, so low voltage, low power analog circuit design techniques are becoming research hotspot. This paper mainly discusses noise figure optimization techniques for inductively degenerated cascode CMOS low-noise amplifiers (LNAs) with on-chip inductors. And it reviews and analyzes simultaneous noise
5、and input matching techniques (SNIM). Based on the noise parameter equations, this paper provides clear understanding of the design principle. In order to achieve low-voltage, low noise, high-linearity of the design specifications, in this paper by three design technology. Firstly, using Matlab tool
6、 analyzes noise figure based on power-constrained, and obtain the optimum transistor size. Secondly, design a folded-cascode-type LNA to reduce the power supper. Third, through theoretical analysis of Linear and combine simulation methods, I obtain a final design of a high-linearity. On the other si
7、de, in order to improve the radio frequency integrated circuit device parameters of flexibility, this paper presents a difference in the structure in the fourth chapter. The proposed circuit design is realized using csm25RF 0.25m CMOS technology, simulated with Cadence specter RF.Based on csm25RF 0.
8、25m CMOS technology, the resulting differential LNA achieves 1.32dB noise figure, -20.65dB S11, -24dB S22, -30.27 S12, 14 dB S21. The LNAs 1-dB compression point is -13.3dBm, and IIP3 is -0.79dBm, with the core circuit consuming 8.1mA from a 1V power supply.Key words:low-noise amplifier (LNA);noise
9、figure;low voltage low power;cascode; noise matching目 录第一章 绪论11.1 课题背景11.2 研究现状及存在的问题21.3 本论文主要工作31.4 论文内容安排3第二章 射频电路噪声理论和线性度分析42.1 噪声理论42.1.1 噪声的表示方法42.1.2 本文研究的器件噪声类型52.1.2.1 热噪声52.1.2.2 MOS噪声模型62.1.3 两端口网络噪声理论72.1.4 多级及联网络噪声系数计算92.2 MOSFET两端口网络噪声参数的理论分析102.3 降低噪声系数的一般措施132.4 MOS LNA线性度分析142.4.1 1
10、dB压缩点142.4.2 三阶输入交调点IIP3162.4.3 多级及联网络线性度表示方法(起最重要作用的线性级)172.5 小结18第三章 CMOS低噪声放大器的设计理论推导203.1 LNA设计指标203.1.1 噪声系数203.1.2 增益203.1.3 线性度203.1.4 输入输出匹配213.1.5 输入输出隔离213.1.6 电路功耗213.1.7 稳定性213.2 CMOS LNA拓扑结构分析213.2.1 基本结构及比较213.2.2 源极去耦与噪声、输入同时匹配(SNIM)的设计223.2.3 共源共栅电路结构(cascode)273.2.4 功率限制的单端分析获得最佳化的宽
11、长比293.3 其它改进型电路比较313.4 偏置电路的设计333.5 cascode设计结论34第四章 2.4GHZ LNA电路设计354.1 工艺库的元器件354.2 差分cascode电路354.2.1 差分电路的设计354.2.2 差分电路的电路极仿真374.3 单端cascode电路394.3.1 单端电路的设计394.3.2 单端电路的电路级仿真424.3.3 单端电路的版图设计、提取及后模拟454.4 电路级仿真和后模拟仿真总结484.5 与其它电路的比较49结束语50致 谢51参考文献52附录A 二端口网络的噪声理论补充53附录B S参数与反射系数55B.1 双端口网络S参数5
12、5B.2 反射系数与S参数的关系56B.3 其它参数与S参数的关系57附录C 电感源极负反馈共源电路噪声推导58附录D MATLAB程序62南京邮电大学2004届本科生毕业设计第一章 绪论1.1 课题背景在最近的十多年来,迅猛发展的射频无线通信技术被广泛地应用于当今社会的各个领域中,如:高速语音来,第3代移动通信(3G)、高速无线互联网、Bluetooth以及利用MPEG标准实现无线视频图像传输的卫星电视服务等技术是日新月异,无线通讯技术得到了飞速发展,预计到2010年,无线通信用户将达到10亿人1,并超过有线通信用户。这种潜在的市场造成了对射频集成电路的巨大需求。原来的混合电路由于不能满足低
13、成本、低功耗和高集成度的要求,而必然要被集成度越来越高的集成电路所取代,并最终形成单片射频收发机芯片。典型的射频收发设备除了对功耗、速度、成品率等性能的要求外,还要考虑噪声、线性范围、增益等指标。在硅CMOS, BiCMOS、双极工艺、GaAs MESFET,异质结双极晶体管(HBT),GeSi器件等众多工艺中,虽然硅CMOS的高频性能和噪声性能不是最好的,但是由于它的工艺最为成熟、成本最低、功耗最小、应用也最为广泛,且随着工艺水平的不断提高,硅CMOS的频率特性和噪声特性正在逐渐得到了改善。重要的是,只有采用硅CMOS工艺才能最终实现单片集成。因此,CMOS射频集成电路是未来的发展趋势1。近
14、几十年来,世界各国的研究人员在CMOS射频集成电路的设计和制作方面进行了大量的研究和探索,使CMOS射频集成电路的性能不断得以改善。乐观的估计,在最近几年里,CMOS射频集成电路将彻底改变无线通信的面貌。射频接收机通常有四种结构:超外差结构、直接变频结构、宽中频变频结构、和低中频变频结构。这四种结构各有优点和缺点,接收机的结构由系统指标决定,包括系统工作频率、接收机动态范围、功耗和集成度等。图1-1所示为超外差接收机的系统框图。这是较为常用的射频接收机结构。一个完整的射频收发系统包括RF前端和基带处理部分,RF前端又称作接收器,它决定着整个系统的基本性能指标,如误码率、发射功率、信道的抗干扰能
15、力等。而低噪声放大器(LNA)是RF前端的最前端,它直接感应天线接收到的微弱 信号,并对其放大,然后传递给后级进行处理,是整个接收通道最为关键的模块之一。因此,本文主要研究2.4GHz LAN在功耗限制和低电压条件下获得低噪声、高线性度的方法。图1-1 超外差接收机的系统框图21.2 研究现状及存在的问题近年来,射频集成电路(RF IC)的应用和研究得到了飞速的发展,CMOS射频集成电路的研究更是成为该领域的研究热点。低噪声放大器是射频接收机中的一个关键,它位于接收机系统的第一级,决定着接收机系统的整体噪声系数。在CMOS射频接收前端,低噪声放大器大约占前端功耗的一半左右,由于低功耗和低噪声是
16、一对矛盾,在设计时需要权衡考虑3。现在几个应用比较多的无线频段有欧洲433MHz的ISM 段,应用于手机GSM 的900MHz和1.8GHz,应用于蓝牙(Bluetooth)的2.4GHz,以及应用于WLNA的2.4GHz和5GHz,这些频率都可以用目前的CMOS工艺来实现,目前已有相应的少量产品问世。由于CMOS射频集成电路是一门比较新的研究领域,国外也是刚刚起步,这对国内的集成电路行业是一个很好的发展契机。但是,目前仍然有许多问题需要研究和解决,尤其是射频MOS管的建模问题以及高性能电感的实现。一方面是MOS管、片上电感、电容、衬底的寄生参数的提取问题,另一方面是这些参数随偏置条件和特征尺
17、寸的缩小而变化的问题。对这些问题的研究和解决,将极大地降低射频集成电路的设计难度。电感和电容是射频集成电路中必不可少的部分,虽然它们已经可以在片上集成,但是目前它们和片外的分立电容、电感相比还有很大的差距,还不能完全满足射频电路的需要。CMOS射频集成电路面临的主要问题就是无法得到高品质因数(Q)的无源器件。片上电感Q值与电感面积成比例关系,在面积受限的情况下,大幅提高Q值尚有一定的困难1,2,4。在电路实现方面,一方面需要完善和提高各个模块的性能,另一方面,需要研究将整个前端整合到一个芯片上时各个模块之间的协同考虑和衬底的串扰问题。另外,还需要考虑功耗和可测试性的问题存在。随着特征尺寸的不断
18、缩小,MOS晶体管的截止频率得到了提高,从而可以较为容易地实现较高工作频率的射频集成电路和提高、改善LNA电路中的各种指标。然而,特征尺寸的缩小却会带来其他方面的问题,例如随着栅长的缩小,沟道的电场场强增强,漏端电流噪声增大等等1,2。这些问题都必须认真考虑。1.3 本论文主要工作在射频低噪声放大器的设计中,各指标存在一定的相互制约性。为了获得较好的性能指标,一般采用提高电路中各元器件的静态工作点,以牺牲功耗来实现高性能。本文研究的2.4GHz LNA电路可以应用于无线局域网(WLNA)和蓝牙技术。在本文中,完成了MOS晶体管的噪声分析,实现了噪声、输入同时匹配的理论研究和电路的实现。着重于研
19、究LNA电路的噪声理论,也比较了多种降低噪声和提高线性度的电路结构。为了减小漏电流三阶频率项,提出消除三阶项的偏置电路等等。电路中的各个指标都是相互制约的,一个指标得到提高,其它指标都会有所减小。在本文中,主要是完成低电压低功耗条件下的低噪声研究,其次再研究实现高线性度的方法。1.4 论文内容安排本论文的内容安排如下:第一章绪论是对本课题研究的项目分析。第二章列出射频电路噪声理论和线性度分析。作为接收通道的射频前端,低噪声放人器的噪声性能决定着整个通路的噪声特性,进而决定了接收机的灵敏度。低噪声放大器的噪声性能还对接收机的动态工作范围起着重要的影响,可见,噪声性能优化是低噪声放大器设计的关键。
20、这一章中,介绍了噪声的一般计算方法,推导出MOSFET二端口网络的噪声表达式,得出减小噪声的一般方法,说明了最简单的噪声匹配理论。在这一章节中,也说明了LNA的线性度计算方法。第三章首先介绍了LNA的设计指标。在原有的设计技术上,进一步推导出了噪声、输入同时匹配的设计技术,进而推导出本文的LNA设计理念。在低噪声放大器的设计中,噪声的设计最为重要,而晶体管的宽长比(W/L)是决定电路噪声系数的最要因数,而静态工作点则主要影响到电路的功耗。在LNA拓扑结构的分析中,得出了一系列的设计方程,使用Matlab工具,则可以从仿真图中得出了最佳的宽长比(W/L)。本章中也简单说明了一种恒跨导的偏置电路设
21、计。第四章,利用前面三章介绍的设计方法设计出了两个电路,一个是差分电路,一个是单端电路,并对这两个电路进行了比较。其中,在单端电路中进行了高线性度的设计,并通过了电路级仿真、版图设计、版图提取、版图电路一致性检查和后模拟。第二章 射频电路噪声理论和线性度分析评价一个射频系统的性能优劣时,两个很重要的指标是噪声系数和非线性失真。在本章中,将会以大量的篇幅来论述经典的噪声理论基础。2.1 噪声理论低噪声放大器位于接收通道的第一级,它的噪声特性将大大影响整个系统的噪声特性。噪声是低噪声放大器设计中的主要考虑因素,这也是低噪声放大器一词的由来。另外,从总体上来说,CMOS器件的噪声特性比双极型器件(B
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
20 积分
下载 | 加入VIP,下载更划算! |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 24 射频 低噪声放大器
