新人教版九年级上24.1.4《圆周角》(2)ppt.ppt
《新人教版九年级上24.1.4《圆周角》(2)ppt.ppt》由会员分享,可在线阅读,更多相关《新人教版九年级上24.1.4《圆周角》(2)ppt.ppt(26页珍藏版)》请在沃文网上搜索。
1、24.1.4 24.1.4 圆周角圆周角(2 2)回顾:圆周角定理及推论?思考:判断正误:1.同弧或等弧所对的圆周角相等()2.相等的圆周角所对的弧相等()3.90角所对的弦是直径()4.直径所对的角等于90()5.长等于半径的弦所对的圆周角等于30()ABC1OC2C3定理与推论定理与推论 在同圆或等圆中,同弧或等弧所对的圆周在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半角相等,都等于这条弧所对的圆心角的一半定定 理理 半圆(或直径)所对的圆周半圆(或直径)所对的圆周角是直角角是直角;90 90的圆周角所对的弦是直径的圆周角所对的弦是直径在同圆或等圆中,相等的圆周
2、在同圆或等圆中,相等的圆周角所对的弧相等角所对的弧相等推推 论论1、如如图图(1),ABC叫叫 O的的_三三角角形形,O叫叫ABC的的_圆。圆。2、若弧若弧BC的度数为的度数为1000,则则BOC=_,A=_3、如图如图(2)四边形四边形ABCD中中,B与与1互补互补,AD的延的延长线与长线与DC所夹所夹2=600,则则1=_,B=_.4.判断判断:圆上任意两点之间分圆周为两条弧圆上任意两点之间分圆周为两条弧,这两条弧的度数和为这两条弧的度数和为3600()内接内接外接外接 100 50 120 60 ABCOEDCBA21新课讲解:新课讲解:若一个多边形若一个多边形各顶点都在同一各顶点都在同
3、一个圆上个圆上,那么,这个多边形叫做圆,那么,这个多边形叫做圆内接多边形,这个圆叫做这个多边内接多边形,这个圆叫做这个多边形的外接圆形的外接圆。OBCDEFAOACDEBOOC CA AB BD D如图,四边形如图,四边形ABCDABCD为为OO的内接四边的内接四边形;形;OO为四边形为四边形ABCDABCD的外接圆。的外接圆。OOCDBA如图:圆内接四边形如图:圆内接四边形ABCDABCD中,中,A A C C 180 同理同理B BD D180180圆的内接四边形的对角互补。圆的内接四边形的对角互补。OOC CA AB BD D如果延长如果延长BCBC到到E E,那么那么DCEDCEBCD
4、BCD 180所以所以A ADCEDCE又又 A A BCDBCD 180180C COOD DB BA AE定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。CBADOEFDB180AC180EABBCDFCBBAD对角外角内对角因为因为A A是与是与2 2相邻的内角相邻的内角1 1的对角,我们把的对角,我们把A A叫做叫做DCEDCE的内对角。的内对角。圆内接四边形的一圆内接四边形的一个外角等于它的内个外角等于它的内对角。对角。C COOD DB BA AE12定理:圆的内接四边形的对角互补,并定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。且任何一个外角
5、都等于它的内对角。几何表达式:几何表达式:ABCD是是 O的内接四边形,的内接四边形,A+C=180且且B=1DABC1E(1)四边形四边形ABCD内接于内接于 O,则,则A+C=_B+ADC=_;若若B=80,则,则ADC=_CDE=_(2)四边形四边形ABCD内接于内接于 O,AOC=100则则B=_D=_(3)四边形四边形ABCD内接于内接于 O,A:C=1:3,则则A=_,180 180 1008050130 45 EDBAC80DBACO100若若ABCDABCD为圆内接四边形,则下列哪为圆内接四边形,则下列哪个选项可能成立个选项可能成立()(A)ABCD1 2 3 4(B)ABCD
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10 积分
下载 | 加入VIP,下载更划算! |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 圆周角 新人 九年级 24.1 ppt
