【精品】复变函数与积分变换重点公式归纳.doc
《【精品】复变函数与积分变换重点公式归纳.doc》由会员分享,可在线阅读,更多相关《【精品】复变函数与积分变换重点公式归纳.doc(8页珍藏版)》请在沃文网上搜索。
1、复变函数与积分变换复习提纲第一章 复变函数一、 复变数和复变函数 二、 复变函数的极限与连续极限 连续 第二章 解析函数一、 复变函数可导与解析的概念。二、 柯西黎曼方程掌握利用C-R方程判别复变函数的可导性与解析性。掌握复变函数的导数:三、 初等函数重点掌握初等函数的计算和复数方程的求解。1、幂函数与根式函数 单值函数 (k=0、1、2、n-1) n多值函数2、指数函数:性质:(1)单值.(2)复平面上处处解析,(3)以为周期3、对数函数 (k=0、1、2)性质:(1)多值函数,(2)除原点及负实轴处外解析,(3)在单值解析分枝上:。4、三角函数: 性质:(1)单值 (2)复平面上处处解析
2、(3)周期性 (4)无界5、反三角函数(了解)反正弦函数 反余弦函数 性质与对数函数的性质相同。6、一般幂函数: (k=0、1)四、调和函数与共轭调和函数:1) 调和函数:2) 已知解析函数的实部(虚部),求其虚部(实部)有三种方法:a)全微分法 b)利用C-R方程 c)不定积分法第三章 解析函数的积分一、复变函数的积分 存在的条件。二、复变函数积分的计算方法1、沿路径积分: 利用参数法积分,关键是写出路径的参数方程。2、闭路积分: a) 利用留数定理,柯西积分公式,高阶导数公式。b) 利用参数积分方法三、柯西积分定理: 推论1:积分与路径无关 推论2:利用原函数计算积分 推论3:二连通区域上
3、的柯西定理推论4:复连通区域上的柯西定理四、柯西积分公式: 五、高阶导数公式:解析函数的两个重要性质:l 解析函数在任一点的值可以通过函数沿包围点的任一简单闭合回路的积分表示。l 解析函数有任意阶导数。本章重点:掌握复变函数积分的计算方法沿路径积分 1)利用参数法积分 2)利用原函数计算积分。闭路积分 利用留数定理计算积分。第四章 解析函数的级数一、幂级数及收敛半径: 1、一个收敛半径为R(0)的幂级数,在收敛圆内的和函数是解析函数,在这个收敛圆内,这个展开式可以逐项积分和逐项求导,即有: 2、收敛半径的计算方法1) 比值法:2) 根值法:二、泰勒(Taylor)级数1、如函数在圆域内解析,那
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10 积分
下载 | 加入VIP,下载更划算! |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 精品 函数 积分 变换 重点 公式 归纳
