欢迎来到沃文网! | 帮助中心 分享知识,传播智慧!
沃文网
全部分类
  • 教学课件>
  • 医学资料>
  • 技术资料>
  • 学术论文>
  • 资格考试>
  • 建筑施工>
  • 实用文档>
  • 其他资料>
  • ImageVerifierCode 换一换
    首页 沃文网 > 资源分类 > DOC文档下载
    分享到微信 分享到微博 分享到QQ空间

    含风电场的电力系统小信号稳定分析.doc

    • 资源ID:974526       资源大小:782KB        全文页数:20页
    • 资源格式: DOC        下载积分:20积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要20积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,下载更划算!
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    含风电场的电力系统小信号稳定分析.doc

    1、含风电场的电力系统小信号稳定分析摘要:风电场接入电网后,给电力系统带来许多不利影响。首先研究了异步风力发电机组的组成结构,并对风力发电机组风轮机系统、桨距控制系统、异步发电机系统三个部分建立了相应的数学模型。并对风电机组和无穷大单机系统的数学模型进行了线性化,得到了整个电力系统的线性化模型。用特征值分析的方法,讨论和研究了保证风电场接入电力系统保持小扰动稳定性的条件,并结合具体的算例作了详细的分析。关键词:小干扰稳定性,风电场,异步电机,特征值分析法1 引言风力发电是我国能源可持续发展的现实而重要的选择。但由于风能具有随机性和间歇性的特点1,随着风力发电规模的不断扩大,风电场并网及并网后的稳定

    2、和安全问题逐渐成为电力工作者急需解决的新课题。为了发挥风力发电的优势,降低成本,风力发电机组大型化,单机装机功率提高,是所有风力发电研究、设计和制造商的不断追求。同时风电并网技术的研究也成为比较热点的研究问题,比如:1)综合分析有关风电并网带来的危害和影响风力发电接入电网后,对电网的影响是多样性的。文献2通过程序计算和实际运行数据,分析了南通地区风电并网后,由于风机机组自身的特征(如间歇性、随机性),在各种运行方式下,对有功潮流、无功电压和系统频率的影响。以及给调度管理部门带来的困难。2)风电并网对系统稳定性影响的研究风电接入网络后,对网络的稳定性产生了一定的影响,这些影响主要包括电网的电压、

    3、频率、静态稳定性和动态稳定性3,4。这其中,特别是对电网小干扰稳定性的影响带来了一直都是研究的热点。文5建立基于异步风电机组和电力系统模型,分析异步风电机组对电力系统小干扰稳定性及阻尼特性的影响以及电力系统暂态稳定性的影响。随着风电并网以及规模的扩大,对于含风电场的电力系统小信号稳定分析具有重要的意义。2 风电场的数学模型6,7,82.1 风速模型大部分风速数据都是平均数据,所以短时间内的风速变化只能以实际测量或者用特定的模型模拟。一般有以下几种模型:1)阵风风速;2)渐变风;3)随机风。2.2 异步风力发电机组的数学模型2.2.1 单台风力发电机的数学模型1)风力机部分风力机械转矩: (2.

    4、1) (2.2)为空气密度(kg /);为风机的机械转速(rad /s);R为风机的叶轮半径(m);V为风速;是风力机的风能利用系数,即单位时间内风力机所吸收的风能与通过叶片旋转面积的全部风能之比。 (2.3)其中与风力机的叶尖速比(风力机叶片顶端线速度与风速之比)以及桨距角有关,根据著名的贝兹(Bet)z理论 的最大值约为0.593。其中 (2.4) (2.5) (2.6)为进行标幺值换算的基准量;g:发电机的极对数; :风机输入端基准转速;n:齿轮箱升速比;2)传动结构部分 (2.7) (2.8) (2.9)为风机轮毂的惯性时间常数;风机的阻尼系数;为风机和发电机转子间的转角差; 为齿轮箱

    5、输入转矩;为传动轴阻尼系数;为传动轴刚性系数;3)异步发电机传动部分 (2.10) (2.11):发电机的阻尼系数;:发电机转子惯性时间常数;:发电机的角速度; :发电机电磁转矩4)浆距控制部分桨距控制本文未考虑节桨距控制的其它环节,如风速控制环节和输出功率控制环节对桨距角的影响 (2.12): 桨距控制系统的惯性时间常数。:初始桨距角2.2.2 异步发电机模型1)功率模型图2.1 异步发电机T形等效电路根据异步电动机等效电路图,在转差s为负的时候,电动机于是就成为发电机,本文采用异步发电机的等效简化型模型如下,进行功率计算。为发电机输出的有功功率 (2.13)为发电机输入轴直接转化的电磁功率

    6、(不计各种损耗) (2.14) (2.15) (2.16) (2.17) (2.18)f为定子电压频率一般取50Hz;为定子磁场角速度;s为转差;为风力发电机吸收的无功功率;为电容无功补偿容量。2)磁暂态模型对于异步发电机采用考虑转子暂态过程的三阶机电暂态模型,将电势,电流分解到q、d轴上,一般来说取极端电压实轴为d轴,虚轴为q轴 (2.19)异步发电机定子电压方程为: (2.20)为暂态电抗 (2.21)为定子绕子电阻;为转子绕组电阻;为定子绕组漏抗;为转子绕组漏抗;为励磁电抗。2.2.3 多台风力发电机的单机等效模型实际的大规模风电场通常包含几十台,上百台风力发电机。暂态过程中发电机滑差的

    7、偏差相差不大,可以将风电场的所有机组等效为一台发电机。等值的参数包括:风轮半径、风轮的惯性时间常数、传动轴的刚性,传动轴、风机、发电机的阻尼系数、,以及发电机的阻抗参数。风轮等效半径为: (2.22)惯性时间常数、刚性系数和阻尼系数的等值可采用加权平均法: (2.23)其中:为每台风力发电的容量;m风电场中发电机台数。进行异步发电机阻抗参数的等值时,假设同一机群的风力发电机出口电压相同,结合异步发电机的等值电路进行串并联计算即可以得到等值机的阻抗参数。3 含风电场的电力系统小信号稳定分析3.1 小干扰稳定性特征值分析方法3.1.1 特征值分析方法模型电力系统小干扰稳定是指系统受到小干扰后,不发

    8、生自发振荡或非周期失步,自动回复到初始运行状态的能力。电力系统小干扰稳定性的分析方法采用特征值分析法。利用该方法分析小干扰稳定性的主要步骤可分为两步:(1)以线性系统理论和李雅普诺夫线性化方法为理论基础,将电力系统模型线性化,将电力系统在某一初始态点描述为一般线性系统;(2)求取状态方程的特征值,讨论振荡的模式、阻尼和频率。电力系统可以用一组非线性微分方程和代数方程来描述: (3.1)其中:列向量为系统自身的状态量;列向量为系统的输出量;列向量为系统的输入态量;f(x,u)、g(x,u)为关于输入输出的非线多元性函数组成一组非线性方程组。将微分方程和线性方程在、处线性化,可以得到: (3.2)

    9、方程组中A、B、C、D的值如下所示A为(n)(n)的方阵,B为(n)(k)的矩阵,C为(m)(n)的方阵,D为(m)(k)的方阵。当i为节点的注入电流,v为节点电压向量时,可以知道 (3.3) 为由网络的节点导纳矩阵。由(3.3)式可以知道(i为输出量、v为输入量), (3.4) 由(3.2)式中,可以得到 ,把左式带入得到即: (3.5)A矩阵为一个n维方阵,也就有A个特征值(包含重根),包含了系统中各种动态元件特性及其网络连接关系的增广状态矩阵,通过求解它的特征值信息就可获得系统小干扰稳定性的各种信息。3.1.2 关于特征值的稳定性判定原则基于李雅普诺夫线性稳定性原理的非线性分析方法被用于

    10、研究电力系统稳定性。稳定性判断原则为:(1)若系统状态矩阵A的所有特征值的实部均为负值,线性化方程的解是稳定的,那么非线性化系统也是稳定的。(2)若系统状态矩阵A的所有特征值的实部至少有一个为正值,线性化方程的解是不稳定的,那么非线性化系统也是不稳定的。3.2 异步风力发电机的线性化空间模型将异步发电机的数学模型进行线性化后 3.3 单机无穷大网络的节点矩阵方程YN 图3.1 单机无穷大系统可以计算矩阵YN3.4 小干扰稳定性分析的MATLAB流程4 含风电场电力系统的小扰动稳定分析和研究对于风电场对系统稳定性的影响,取一个单机无穷大系统来阐述其对系统稳定性的影响,为了便于计算以下所有数值均采

    11、用标幺值。4.1 单机无穷大系统算例异步发电机参数(以额定容量 600kW 为基准的标幺值):r1=0.00306;r2=0.00373;x1=0.09985;x2=0.10906;xm=3.54708;tj=10;s=0.004。风力机参数:Khg=722;tw=5.433;R=26;tgen=0.84; dhg=32.2; dg=0.022; n=100; dty=1.06; Vw=16;系统参数:=1.00;x t = 0.033;xl = 0.002。于是定义,发电机额定电压,扫风面积,空气密度,额定风速,以及并联电容,风机台数为单机,线路阻抗,变压器阻抗。以上即为本算例的单机无穷大系

    12、统的基本结构,发电机经过一个并联电容器后通过变压器连接到无穷大系统。此时的状态空间矩阵以及增益矩阵如下此时假设发电机的端电压下降到原来的90%,作为此次此小扰动,仿真结果如下:下图为风电场在电力系统中受到小干扰后发电机转子转速的变化。图4.1 当电磁功率有变化时发电机转子转速随时间变化y轴:发电机转子转速(rad/s);x轴:时间t(s)。现在取情况1为以上额定情况,情况2线路阻抗下降到,小干扰同上,但在6秒钟恢复,仿真对比结果如下:图4.2y轴:转子转速变化量(rad/s);x轴:时间t(s);线1的阻尼比为0.1172;线2的阻尼比为0.1854。图4.3y轴:转子转速变化量(rad/s)

    13、;x轴:时间t(s);线1的阻尼比为0.0862;线2的阻尼比为0.1854。从图中可以观察到最终转速仍旧到达一个新的稳定状态。可以得出结论,风电场组建的电力系统是一个可以稳定的。但是,不同条件下其稳定程度不同,以下做出逐一分析。4.2 风速对系统小扰动稳定性的影响研究根据以上系统,在不同风速下即不同功率下分析风电场出力对系统稳定性的影响。风速/m/s电压/pu相角/ 有功/pu无功补偿/pu与定子转速强相关的特征值阻尼比谐振频率71.0395-0.00505-0.098911.0805-1.8985 13.288i0.141442.114891.03960.0009240.0181341.0

    14、807-1.9221 13.292i0.143122.1154111.03880.0125320.245841.0792-1.9329 13.273i0.14412.1125131.03590.0283730.555571.0731-1.9227 13.193i0.144222.0997151.02950.0464990.905841.0598-1.8911 13.014i0.143812.0712171.0190.0650251.25531.0383-1.8463 12.713i0.143732.0233191.00440.0824231.57041.0087-1.8063 12.272i0

    15、.145621.9531210.985470.0976341.8280.97115-1.8032 11.67i0.152711.8573230.959730.110312.01610.92108-1.9244 10.806i0.175331.7198图4.4阻尼比与风速的关系y轴:阻尼比;x轴:风速(m/s);图4.5 谐振频率与风速的关系y轴:振荡频率(Hz);x轴:风速(m/s);由以上数据和图形可知:(1) 当风速在20m/s之内时,阻尼比变化比较平稳,而20m/s之后便迅速变大。(2) 谐振频率则在10秒以内变化较缓慢,过了10秒后就会迅速减小。(3) 可以得出结论,在适当的风速情况下

    16、投切机组,才能保证系统的稳定。4.3 并联容抗对系统小扰动稳定性的影响研究并联容抗/pu电/pu相角/有功/pu无功补偿/pu与定子转速强相关的特征值阻尼比谐振频率-40.982090.0582221.0830.24113-1.8887 -12.43i0.150221.9783-3.60.983610.0581321.0830.26875-1.8879 -12.446i0.149981.9808-3.20.985520.0580211.0830.30352-1.8869 -12.465i0.149671.9839-2.80.987990.0578771.0830.34862-1.8857 -1

    17、2.49i0.149281.9879-2.40.991290.0576861.0830.40944-1.884 - 12.524i0.148761.9933-20.995950.0574181.0830.49596-1.8817 -12.572i0.148022.0009-1.61.0030.0570171.0830.62878-1.8784 - 12.646i0.146932.0127-1.21.0150.056351.0830.8585-1.8733 -12.774i0.14512.033-0.81.03970.0550211.0831.3513-1.8645 - 13.045i0.141

    18、492.0762图4.6并联电容阻抗对阻尼比的影响y轴:阻尼比;x轴:电容阻抗(pu);图4.7振荡频率与无功补偿电容阻抗的关系y轴:振荡频率;x轴:电容阻抗(pu);由上图可见:(1)补偿电容阻抗Xc变大,会使系统的阻尼比减小,系统的小干扰稳定性减弱。(2)电容阻抗在接近零的时候,对系统的影响将变大。(3)在风电场并联电容器的选择中,要全面的考虑好它对系统小干扰稳定性的影响。4.4 风电场机组台数对系统小扰动稳定性的影响研究机组台数电压/pu相角/有功/pu无功补偿/pu与定子转速强相关的特征值阻尼比谐振频率11.02470.0558181.0831.0501-1.8695 12.88i0.

    19、143652.049921.05060.109072.1662.2074-1.8205 16.025i0.112882.550531.07790.159863.2493.4855-1.9246 17.491i0.109382.783741.10720.208164.33214.9037-2.0038 18.298i0.108862.912151.13930.253825.41516.4902-2.0363 18.797i0.10772.991761.17520.296516.49818.2863-2.028ff 19.136i0.105393.045671.21620.335737.58111

    20、0.354-1.9875 19.385i0.1023.0852图4.8系统的谐振频率随着风场发电机台数的变化y轴:振荡频率;x轴:风力发电机组台数;图4.9系统的阻尼比随着电场台数的变化y轴:阻尼比;x轴:风力发电机组台数;由以上的数据可见:(1)使用普通异步发电机风力发电时,随着风电场风电机组台数的增加,系统的小干扰稳定性会有所下降。(2)风电场风机对系统小干扰稳定性有削弱作用,所以在风电场的规划中要考虑所处系统的容量,稳定性。5 结论通过对异步风力发电机的数学模型的建立,用特征值法建立了单机无穷大系统对含风电场的电力系统进行了小干扰稳定性分析。分别对改变风速即风机出力的情况、改变补偿电容容

    21、量以及改变发电厂风力发电机台数的情况进行了稳定性分析。得出风电场在正常范围内是小干扰稳定的。但是在同传统同步电机系统相比较时,风电场的小干扰稳定性的稳定阈度比较小。而且在系统随着电容、风速等运行条件的变化时,系统的稳定性有所下降。特别是当风电场风机台数增加时,系统的稳定性下降最为明显。所以在利用风能发电时,应当综合考虑,合理平衡其间的利弊。参考文献1 崔建红,许健,刘京爱.我国风力发电的现状与趋势J.科技情报开发与经济. 2009, 19(10):121-123.2 黄峰.南通地区风电发展及对南通电网的影响J.江苏电机工程.2009, 28(1):57-59.3 董雷,程卫东,杨以涵.含风电场

    22、的电力系统概率潮流计算J.电网技术. 2009,33(16):87-91.4 杨国生,李欣,周泽昕.风电场接入对配电网继电保护的影响与对策J.电网技术.2009, 33(11):87-91. 5 关宏亮,迟永宁,戴慧珠,杨以涵.异步风电机组接入系统的小干扰稳定及控制J.电力系统自动化.2008,32(4):54-58. 6 徐娇, 李兴源.异步风力发电机组的简化RX模型及其潮流计算J.电力系统自动化.2008,32(1):21-25.7 吴义纯,丁明,张立军.含风电场的电力系统潮流计算J.中国电机工程学报.2005,25(4):36-39.8 张红光,张粒子,陈树勇,安宁.大容量风电场对电力系

    23、统小干扰稳定和阻尼特性的影响J.电力系统自动化. 2008,31(13):75-80.附件1:小干扰稳定性分析的MATLAB主程序%初值定义额定容量/kw 600, %转子电阻r2/pu 0.00373%定子电阻r1/pu 0.00306%励磁电阻rm/pu 0.0284%额定电压/kV 0.69%定子电抗x1/pu 0.09985%转子电抗x2/pu 0.10906%励磁电抗xm/pu 3.54708%额定转差sN -0.004%功率因数 0.89%风能利用系数Cp 0.1217%扫掠面积A/m2 2124%空气密度/(kg/m3) 1.06%额定风速v/(m/s) 16%参数定义disp(

    24、-)disp(-)sn=-0.004;Vw=16;%风速Khg=722;tw=5.433;R=sqrt(2124/pi);tgen=0.84;dhg=32.2;dg=0.022;n=100;dty=1.06;Tbeita=.2;%风机参数%迭代初值U1=1;cita=10/180*pi;s=-0.005;%计算初始量 Cita为角度值还是标幺值sincos中有相关。f=50;xc=-3;xl=0.02;xt=0.033;%系统g=1;%电机极对数r1= 0.00306;r2=0.00373;x1=0.09985;x2=0.10906;xm=3.54708;Pn=6e5;%电机1%r1=0.00

    25、779;r2=0.0082;x1=0.07937;x2=0.1158;xm=4.1039;Pn=1.5e6;%电机2webase=100*pi*(1-sn);wbase=webase/(n*g);%基准值%计算参数ww=100*pi*(1-s)/webase;beita0=15;lamad=ww*wbase*R/Vw;Cp=0.22*(116/(1/(1/(lamad+0.08*beita0)-0.035/(beita03+1)-0.4*beita0-5)*exp(-12.5/lamad);%Cp=.1217;Pw=(Cp*pi*dty*R2*Vw3/2)/Pn;%DP_cita=-25.52

    26、/(lamad+.8e-1*beita)2*exp(-12.5/lamad)+2.750*(116/(lamad+.8e-1*beita)-4.060/(beita3+1)-.4*beita-5)/lamad2*exp(-12.5/lamad)%系统导纳方程G11=0;G12=0;G21=0;G22=0;B11=-1/(xl+xt);B12=1/(xl+xt);B21=1/(xl+xt);B22=-1/(xl+xt);Y=G11+B11*i G12+B12*i;G21+B21*i G22+B22*i;% 中间量Pe=-U12*r2*s/(r22+s2*(x1+x2)2);Pem=-U12*r2

    27、*(s-s2)/(r22+s2*(x1+x2)2);KQe=-(x1+x2+xm)*(x1+x2)*s2+r22)/(s*xm*r2);Qe=-U12/xc-KQe*Pe;P2=U12*(G11*cos(0)+B11*sin(0)+U1*(G12*cos(cita)+B12*sin(cita);Q2=U12*(G11*sin(0)-B11*cos(0)+U1*(G12*sin(cita)-B12*cos(cita);DP=Pe-P2;DQ=Qe-Q2;DPmec=Pw-Pem;%牛拉法计算END=0;n=0;while(END=0) if(abs(DP)1e-6)*(abs(DQ)1e-6)*

    28、(abs(DPmec)10); break; endendend%初始值定义及计算DCp_lamad0=-25.52/(lamad+.8e-1*beita0)2*exp(-12.5/lamad)+2.750*(116/(lamad+.8e-1*beita0)-4.060/(beita03+1)-.4*beita0-5)/lamad2*exp(-12.5/lamad);%Cp对lamad求偏导Tw=Pw/ww;x_=x1+x2*xm/(x2+xm);f0=50;ww=(1-s)*2*pi*f0/webase*wbase;x=x1+xm;s0=-s;T_d0=(x2+xm)/(2*pi*f0*r2

    29、);Ud=U1*cos(cita);Uq=U1*sin(cita);U1z=U1*cos(cita);%(U1z-1)/(i*(xt+xl)+1/(i*xc)id0=real(U1z-1)/(i*(xt+xl)+1/(i*xc);iq0=imag(U1z-1)/(i*(xt+xl)+1/(i*xc);E_q0=Uq+r1*iq0+x_*id0;E_d0=Ud-x_*iq0+r1*id0;%状态矩阵ABCDA=-1/Tbeita 0 0 0 0 0; 0 0 wbase -wbase 0 0; 0 -Khg/tw 1/tw*(Tw*R*wbase/(Cp*Vw)*DCp_lamad0-Tw/ww

    30、)-dhg-dg) dhg/tw 0 0; 0 Khg/tgen dhg/tgen -(dhg+dg)/tgen -(E_q0-id0*x_)/(tgen*x_) -(E_d0+iq0*x_)/(tgen*x_); 0 0 0 -2*pi*f0*E_q0 -x/(T_d0*x_) -2*pi*f0*s0 ; 0 0 0 2*pi*f0*E_d0 2*pi*f0*s0 -x/(T_d0*x_);B=0 0; 0 0; 0 0; -E_q0/(tgen*x_) -E_d0/(tgen*x_); (x-x_)/(T_d0*x_) 0; 0 (x-x_)/(T_d0*x_);C=0 0 0 0 0 1/x_; 0 0 0 0 -1/x_ 0;D=0 -1/x_; 1/x_ 0 ;Yn= 0 1/(xl+xt)+1/xc; -1/(xl+xt)-1/xc 0 ;A_=A+B*inv(Yn-D)*C;TeZZA=eig(A)TeZZ=eig(A_)%特征值ZuNiBi1=real(TeZZ(1)/abs(TeZZ(1);ZuNiBi2=real(TeZZ(2)/abs(TeZZ(2);ZuNiBi3=real(TeZZ(3)/abs(TeZZ(3);ZuNiBi4=real(TeZZ(4)/abs(TeZZ


    注意事项

    本文(含风电场的电力系统小信号稳定分析.doc)为本站会员(风****)主动上传,沃文网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知沃文网(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服点击这里,给沃文网发消息,QQ:2622162128 - 联系我们

    版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,如有知识产权人并不愿意我们使用,如有侵权请立即联系:2622162128@qq.com ,我们立即下架或删除。

    Copyright© 2022-2024 www.wodocx.com ,All Rights Reserved |陕ICP备19002583号-1

    陕公网安备 61072602000132号     违法和不良信息举报:0916-4228922