欢迎来到沃文网! | 帮助中心 分享知识,传播智慧!
沃文网
全部分类
  • 教学课件>
  • 医学资料>
  • 技术资料>
  • 学术论文>
  • 资格考试>
  • 建筑施工>
  • 实用文档>
  • 其他资料>
  • ImageVerifierCode 换一换
    首页 沃文网 > 资源分类 > DOC文档下载
    分享到微信 分享到微博 分享到QQ空间

    单相桥式全控整流及有源逆变电路的实现研究与仿真设计.doc

    • 资源ID:842452       资源大小:1.72MB        全文页数:42页
    • 资源格式: DOC        下载积分:20积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要20积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,下载更划算!
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    单相桥式全控整流及有源逆变电路的实现研究与仿真设计.doc

    1、目 录摘 要1Abstract2目 录31 绪论51.1 整流技术的发展概况51.2 系统仿真概述52 单相桥式全控整流及有源逆变的工作原理72.1 整流电路概述72.2 有源逆变概述72.3 单相桥式全控整流电路的工作原理82.3.1 工作原理82.3.2 参数计算102.4 单相桥式全控有源逆变的工作原理112.4.1 工作原理112.4.2 换相重叠角122.4.3 逆变颠覆的概述122.4.4 最小逆变角限制132.5 晶闸管整流电路的触发控制133 单相桥式全控整流及有源逆变电路的设计163.1 选择整流电路163.2 计算整流变压器的参数163.3 选用冷却系统163.4 开关元件

    2、的选用与计算163.5 保护系统的设计173.6 主要部件和器件的计算及选用173.7 单相桥式全控整流及有源逆变电路的设计174 单相桥式全控整流及有源逆变现象的观察184.1 单相桥式全控整流的观察184.2 单相桥式有源逆变的观察184.3 逆变颠覆现象的观察185 单相桥式全控整流及有源逆变的仿真195.1 Matlab软件简介195.2 Simulink简介205.3 单相桥式全控整流及有源逆变的仿真模型215.3.1 仿真模型模块介绍215.3.2 仿真模型的设计245.3.3 仿真模型模块的参数设置245.4 模型仿真及仿真结果335.5 仿真过程中问题的解决及一些技巧395.5

    3、.1 如何根据原理建立仿真模型395.5.2 调试中参数设置方法395.5.3 创建模型的一些技巧406 总结416.1 论文主要内容总结416.2 实验过程总结416.3 仿真过程总结426.4 设计和开发方面的不足42参考文献43致 谢44摘 要 本文以单相桥式全控整流及有源逆变电路为研究对象,介绍了单相桥式全控整流及有源逆变电路的工作原理,并对MATLAB/Simulink模块中电力电子仿真所需要的电力系统模块做了简要的说明,介绍了单相桥式全控整流及有源逆变电路的主要环节整流及有源逆变的工作原理,并且分析了几种常见的触发角,在此基础上运用MATLAB软件分别对电路的仿真进行了设计;实现了

    4、对单相桥式全控整流及有源逆变电路的仿真。关键词:Simulink;单相桥式全控整流及有源逆变电路;仿真设计Abstract In this paper, single-phase bridge controlled rectifier and inverter circuit for the active study, described single-phase bridge controlled rectifier and active inverter circuit works, and matlab / simulink module needed to power electron

    5、ic simulation power system module to do a brief description of the single-phase bridge controlled rectifier and active inverter main components - the active rectifier and inverter works, and analyzed several common trigger angle On this basis, the use of matlab software simulation were carried out o

    6、n the circuit design; implementation of single-phase bridge controlled rectifier and active inverter system.Keywords: simulink; single-phase bridge controlled rectifier and active inverter; circuit simulation design绪论1.1 整流技术的发展概况整流电路广泛应用于工业中。整流与逆变一直都是电力电子技术的热点之一。桥式整流是利用二极管的单向导通性进行整流的最常用的电路,常用来将交流电转

    7、变为直流电。从整流状态变到有源逆变状态,对于特定的实验电路需要恰到好处的时机和条件。其基本理论与方法已成熟十几年了,随着我国交直流变换器市场的迅猛发展,与之相关的核心生产技术应用与研发必将成为业内企业关注的焦点。目前,整流设备的发展具有如下特点:传统的相控整流设备已经被先进的高频开关整流设备所取代。系统的设计已经由固定式演变成模块化,以适应各种等级、各种规模通信设备的需求。系统的交流配电单元、直流配电单元和电池配电单元等,可以是独立的屏(柜),与机架式整流设备组屏,也可以是独立的模块,安装在机架式整流设备内。可以组成5000A以上的大系统,也可以组成几十安培甚至更小的小系统。通信电源可以安装在

    8、独立的机房内,也可以安装在通信设备机房内,甚至直接安装到通信设备机架内。加上阀控式密封铅酸蓄电池的广泛应用,为分散供电创造了条件。从而大大提高了通信网运行的可靠性和通信质量。高频开关整流器采用了模块化设计、N 1配置和热插拔技术,方便了系统的扩容,有利于设备的维护。系统一般都配置了防雷保护和浪涌抑制,有效地防止了雷电冲击和电压的突变、尖峰干扰及开、关机浪涌,提高了电源系统的安全性和供电质量。电源设备的智能化设计和通信接口的设置,使电源系统的集中监控成为可能。由于整流设备和配电设备等配备了微机监控器,使系统具备了智能化管理功能和故障告警及自保护功能。新器件、新材料、新技术的应用,使高频开关整流器

    9、跃上了新台阶。1.2 系统仿真概述所谓系统仿真,就是根据系统分析的目的,在分析系统各要素性质及其相互关系的基础上,建立能描述系统结构或行为过程的、且具有一定逻辑关系或数量关系的仿真模型,据此进行试验或定量分析,以获得正确决策所需的各种信息。它是一种对系统问题求数值解的计算技术。尤其当系统无法通过建立数学模型求解时,仿真技术能有效地来处理。仿真是一种人为的试验手段。它和现实系统实验的差别在于,仿真实验不是依据实际环境,而是作为实际系统映象的系统模型以及相应的“人造”环境下进行的。这是仿真的主要功能。仿真可以比较真实地描述系统的运行、演变及其发展过程。仿真的过程也是实验的过程,而且还是系统地收集和

    10、积累信息的过程。尤其是对一些复杂的随机问题,应用仿真技术是提供所需信息的唯一令人满意的方法。对一些难以建立物理模型和数学模型的对象系统,可通过仿真模型来顺利地解决预测、分析和评价等系统问题。 通过系统仿真,可以把一个复杂系统降阶成若干子系统以便于分析。)通过系统仿真,能启发新的思想或产生新的策略,还能暴露出原系统中隐藏着的一些问题,以便及时解决。2 单相桥式全控整流及有源逆变的工作原理2.1 整流电路概述整流电路是把交流电压变换为单极性电压的电路。大多数整流电路由变压器、整流主电路和滤波器等组成。它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用。整流电路通常由主电路、滤波器

    11、和变压器组成。20世纪70年代以后,主电路多用硅整流二极管和晶闸管组成。滤波器接在主电路与负载之间,用于滤除脉动直流电压中的交流成分。变压器设置与否视具体情况而定。变压器的作用是实现交流输入电压与直流输出电压间的匹配以及交流电网与整流电路之间的电隔离(可减小电网与电路间的电干扰和故障影响)。整流电路是电力电子电路中最早出现的一种,它将交流电变为直流电,应用十分广泛,电路形式各种各样。按其组成器件可分为不控整流电路、半控整流电路和全控整流电路。其中,半控整流电路和全控整流电路按其控制方式又可分为相控整流电路和斩波整流电路。相控整流电路由于采用电网换相方式,不需要专门的换相电路,因而电路简单、工作

    12、可靠,得到广泛应用。但相控整流电路在控制用较大时,功率因数较低,网侧电流谐波含量较大。因而在大功率调速传动中,低速运行时,采用斩控整流电路可解决功率因数变坏的问题。按电路结构可分为桥式电路和零式电路,按交流输入相数分为单相电路和多相电路,按变压器二次侧电流的方向是单相或双相,又分为单拍电路和双拍电路;实用电路是上述的组合结构。2.2 有源逆变概述逆变与整流相对应,直流电变成交流电。交流侧接电网,为有源逆变。交流侧接负载,为无源逆变。逆变电路的分类,根据直流侧电源性质的不同,直流侧是电压源:电压型逆变电路,又称为电压源型逆变电路,直流侧是电流源:电流型逆变电路,又称为电流源型逆变电路,电压型逆变

    13、电路,输出电压是矩形波。电流型逆变电路,输出电流是矩形波。电压型逆变电路的特点:直流侧为电压源或并联大电容,直流侧电压基本无脉动。交流侧输出电压为矩形波,输出电流和相位因负载阻抗不同而不同。阻感负载时需提供无功功率。为了给交流侧向直流侧反馈的无功能量提供通道,逆变桥各臂并联反馈二极管。电流型逆变电路主要特点:直流侧串大电感,电流基本无脉动,相当于电流源。交流侧输出电流为矩形波,与负载阻抗角无关。输出电压波形和相位因负载不同而不同。直流侧电感起缓冲无功能量的作用,不必给开关器件反并联二极管。2.3 单相桥式全控整流电路的工作原理2.3.1 工作原理单相桥式全控整流电路图如下图所示:图2.1 单相

    14、桥式全控整流电路该电路的特点是:要有电流通过阻感性电阻RL,必须有晶闸管VT1和VT3或VT2和VT4同时导通,由于晶闸管的单向导电性能,尽管u2是交流,但是通过阻感性电阻RL的电流id始终是单方向的直流电,其工作过程可分如下几个阶段:阶段1(0t1):这阶段u2在正半周期,A点电位高于B点电位,晶闸管VT1和VT2反向串联后与u2连接,VT1承受正向电压为u2/2,VT2承受u2/2的方向电压;同样VT3和VT4方向串联后与u2连接,VT3承受u2/2的正向电压,VT4承受u2/2的反向电压。虽然VT1和VT3受正向电压,但是尚未触发导通,负载没有电流通过,所以ud=0,id=0。阶段2(t

    15、1):在t1时同时触发VT1和VT3,由于VT1和VT3受正向电压而导通,有电流经A点VT1RVT3变压器B点形成回路。在这段区间里,ud=u2,id=iVT1=iVT3=i2=ud/R。由于VT1和VT3导通,忽略管压降,uVT1=uVT2=0,而承受的电压为uVT2=uVT4=u2。阶段3(t2):从t=开始u2进入了负半周期,B点电位高于A点电位,VT1和VT3由于受反向电压而关断,这时VT1VT4都不导通,各晶闸管承受u2/2的电压,但VT1和VT3承受的是反向电压,VT2和VT4承受正向电压,负载没有电流通过,ud=0,id=i2=0。阶段4(t22):在t2时,u2电压为负,VT2

    16、和VT4受正向电压,触发VT2和VT4导通,有电流经B点VT2RVT4A点,在这段区间里,ud=u2,id=iVT2=iVT4=i2=ud/R。由于VT2和VT4导通,VT2和VT4承受u2的负半周期电压,至此一个周期工作完毕,下一个周期重复上述过程,单相桥式整流电路两次脉冲间隔为180。如果整流电路的负载电感较大,id波形将连续,电路的工作情况可分为电流上升和电流稳定两个阶段。在电流上升阶段,t1(t=)时,触发VT1和VT3导通,id从0开始上升,由于电感较大,到t2(t=+)时,由于u2已经进入负半周期,VT2和VT4承受正向电压,有脉冲即导通。VT2和VT4导通后,电路P点电位将高于A

    17、点,Q点电位低于B点,VT1和VT3承受反向电压而关断,原来经由VT1和VT3的电流id改经VT2和VT4通过,这就是VT1和VT2换流,同时VT3和VT4换流,使电路进入第二个导通区间(t2t3)。在第二个导通区间id将从VT1和VT3关断和VT2和VT4开通时的电流继续上升,电感的储能增加。u2进入第二个周期,VT1和VT3承受正向电压,受触发即导通,使电路的P点电位高于B点,Q点电位低于A点,使VT2和VT4承受反向电压而关断,实现VT1和VT3与VT2和VT4的换流。如此经过几个导通周期,电感储能达到饱和,即每个导通周期开始时的电流与终止时的电流相当,在第三个导通周期t3t4,负载电流

    18、id进入了稳定阶段。在大电感情况下,id进入稳定阶段后电流的波动很小。在稳定工作阶段,两组晶闸管交替导通,每组导通角为180,通过晶闸管的电流是宽为180,高为Id的矩形方波。在一周期的正负半周中变压器副边都有电流i2通过,变压器的利用率较半波整流提高,并且i2中不含直流分量,不易产生变压器发热问题。晶闸管承受的电压波形在晶闸管导通时UVT=0,在晶闸管关断时,则承受的电压u2,因此承受的最高正反电压均为U2。如果控制角=90,整流输出电压ud的正负半周期面积相等,整流输出电压的平均值为0。并且若90,在u2的半周范围内,触发VT1和VT3或VT2和VT4,晶闸管能够导通,但是晶闸管的导通角减

    19、小,而ud的正负半周面积相等,ud的平均值都为0,因此电感性负载时,控制角的有效移相控制范围为090。单相桥式全控整流电路波形如下图所示:图2.2 单相桥式全控整流电路波形2.3.2 参数计算1. 输出平均电压Ud:2. 输出平均电流Id:3. 变压器副边绕组电流有效值I2:4. 流过晶闸管的电流有效值IT:2.4 单相桥式全控有源逆变的工作原理2.4.1 工作原理逆变是将直流电变换成交流电。如果逆变后的交流电是直接提供给负载,成为无缘逆变;如果逆变后的交流电是送到交流电网,则称为有源逆变。整流电路在满足一定条件情况时,可以将直流侧的电能经过整流器回送到交流侧电源。在RL负载中,在负载电流的上

    20、升阶段,交流电源经整流器向负载提供电能,在负载电流的下降阶段,id与ud反方向,是电感释放储能,释放的储能一部分在电阻中消耗,一部分则经整流器回馈到交流电源。RL负载电感的储能是有限的,即使R=0、=90时,电感也只能使储存和释放的电能相等。但是如果整流器的负载中含有直流电动势E,情况就不同了,直流电动势可以源源不断的提供直流电能,并通过整流器转化为交流电回馈电网,这就是可控整流器的有源逆变工作状态。在有源逆变状态,直流电源E要经整流器向交流电源回馈电能,由于整流器只能单方向输出电流,因此直流电源要输出电能,电动势E的方向必须和整流器输出电流的方向相同,同时为使整流器能从直流电动势E吸取电能,

    21、整流器输出电压Ud的极性也要与整流状态时相反。这就是说,如果整流器工作在整流状态时,Ud极性为上“”下“”,对RLE负载有90;在整流器工作于有源逆变状态时,Ud极性应为上“”下“+”,对RLE负载应有90,这样电流Id从E的“+”端流出,从整流器“+”流入,电能才能从直流电源输出,并经整流器回馈交流电网。因此整流器工作于有源逆变的条件可以归结如下:整流器负载含有直流电动势,电动势E的方向与整流器电流Id的方向相同;整流器的控制角90,整流器输出电压反向,且Ud应略小于直流电动势E。半控桥式整流电路和负载侧带有续流二极管的整流电路,由于二极管短路了直流电动势E,故不能工作于有源逆变状态,因此需

    22、要工作于有源逆变状态的整流器必须是全控整流电路。并且如果在有源逆变时,整流器控制角90,则Ud极性没有改变,Ud和E将顺向连接,在负载回路将产生很大电流Id,Id=(E+Ud)/R,这时直流电动势和整流器同时输出电能,不仅电流很大,并且该电能消耗在负载回路的电阻上,这种情况一般是不允许的,要防止这种状态出现。为了反映整流电路的整流和逆变两种不同的工作状态,设置了逆变角,且令=180。当整流电路工作于整流状态时,090,相应的90180。当整流电路工作于逆变状态时,090,相应的90180。2.4.2 换相重叠角在整流电路的分析中,认为晶闸管的导通和关断是瞬时完成的,实际上电力电子器件的导通和关

    23、断都需要一定的时间。整流交流电源如果来自整流变压器,变压器有漏抗;如果整流器直接连接电网,为了限制可能的短路电流,大功率整流器交流侧也需要连接进线电抗器。由于电流不能突变,这些电感的存在,限制了晶闸管在导通和关断时的电流上升和下降速度,使晶闸管之间换流需要一定时间来完成,在相控电路中,换流时间以换流重叠角来表示。在换流过程中,整流器输出电压为换流的二相交流相电压之和的二分之一。在重叠换流期间,整流输出电压较不考虑重叠换流时的输出电压要小些,即产生了换相中的电压降。2.4.3 逆变颠覆的概述 在考虑交流电源电抗后,在整流电路有源逆变时,如果很小,则整流电路不能正常换相。由于交流电源电抗产生了重叠

    24、换流时间,使换流不能瞬时完成在t4时触发VT2,由于交流电源电抗产生了重叠换流时间,使换流不能瞬时完成,在重叠换流时间内已经有uaub,因此在换流结束后仍应是VT1继续导通,VT2并不能导通,使换流不能成功。并且ua进入正半周后,直流电动势E和ua顺向串联,整流器输出电流迅速增加超过额定允许范围,轻则使过电流保护跳闸,重则烧坏晶闸管或快速熔断器,这就是“逆变颠覆”现象。2.4.4 最小逆变角限制为了避免逆变颠覆现象,不能使太小,需要对最小逆变角进行限制,以确保电路能正常换流。一般取最小逆变角min为min= + + 式中:为晶闸管关断时间tq折合的电角度,为换流重叠角,为安全裕量角,考虑以上因

    25、素,min一般在30到35左右,min太小,将影响整流器的安全运行;min太大,将使逆变时输出电压过低,影响有源逆变的效率。逆变颠覆现象还可能发生在电源缺相,晶闸管或快速熔断器损害,晶闸管触发脉冲丢失等情况下,一旦发生这些情况,整流器在有源逆变时都不能正常换流而造成逆变颠覆,因此工作在有源逆变状态时,整流电路的可靠性是需要重视的。2.5 晶闸管整流电路的触发控制晶闸管导通需要正向电压和触发脉冲两个条件,在整流电路中主要分析了正向电压条件,而对触发脉冲是认为召之即来挥之即去的,需要时就能有,实际上触发脉冲需要有相应的电路产生,这就是触发电路。对触发电路的基本要求是:能产生晶闸管触发信号,信号有一

    26、定强度,满足晶闸管门极驱动条件。触发脉冲的形状,能使晶闸管快速导通和可靠关断;触发信号能移相控制,即改变脉冲的控制角;触发信号在需要晶闸管导通时产生,即触发电路产生脉冲与整流电路的需要两者间要步调一致。满足这些要求的信号都可以用于晶闸管的触发,因此晶闸管的触发电路从简单的RC移相到复杂的电路都有。锯齿波移相触发电路如下图所示:图2.3 锯齿波移相触发电路图2.4 触发电路各点波形1. 锯齿波的形成在输入的同步电压uT负半周,D1导通,A点电位为负,钳制了T2基极电位,使T2截止,且电容C1充电。在uT变正时,D1截止,C1经R1反向充电,A点电位从负逐步上升,C1延缓了A点电位变正的时间,其目

    27、的是拓宽生成锯齿波的宽度,T2截止时C2充电生成锯齿波,选择R1、C1的参数可以使锯齿波宽度达到240。在T2截止时,电容C2经+15VRP1R3T1充电,B点电位逐步提高,在T2导通时,C2经T2迅速放电,在B点形成锯齿波。稳压管DW1和T1组成恒流电路,从而调节锯齿波的斜率。锯齿波在uT过0变负,T2截止时开始上升,因此锯齿波和uT同步。T3,R5组成射极跟随器,以增强带动后级负载的能力。2. 移相控制R6、R7、R8、T4组成移相控制电路,在移相控制电压Uc=0时,负偏置电压Up和锯齿波信号叠加,使锯齿波下移,调节了锯齿波的过零点,用以整定脉冲的初始相位。初始相位是整流电路输出电压Ud=

    28、0时的控制角大小。如果Uc0,若Uc为正,锯齿波过零点前移,对应控制角减小;若Uc为负,则锯齿波的过零点后移,对应控制角增加,因此调节Uc可以实现相位控制。该触发电路移相范围可达240,一般只使用中间线性度较好的180区间,就可以满足整流和逆变的脉冲移相控制要求。3. 脉冲形成R9、C3、T4组成脉冲形成电路。在T4基极电位为负时,T4截止,D点呈高电平。在C点电位为正时,T4导通,钳制D点为零电平。D点电位的负跳变,经电容C3耦合,在T5基射极间形成一个负的尖脉冲,峰值约为-15V,负的尖脉冲使T5截止。在T5截止期间,T5基极呈高电平,在T5导通时,F点被钳制在约-15V,形成一个矩形脉冲

    29、,推动了后级功放输出。4. 脉冲输出复合管T7、T8组成功放输出电路。T5输出的脉冲使T7、T8导通,脉冲变压器Tp原边有脉冲电流产生,其副边感应相应的脉冲输出,去触发连接的晶闸管。脉冲变压器的作用是隔离触发电路和晶闸管主电路,使触发电路和晶闸管主电路没有电的联系。D7、R14用于吸收T7、T8关断时,变压器绕组产生的di/dt。D8、D9用于减少干扰信号对触发的影响,R16是限流电阻。3 单相桥式全控整流及有源逆变电路的设计3.1 选择整流电路整流电路的选择应根据电源情况及装置的容量来确定。一般情况下,装置容量在5kW以下,多采用单相桥式整流电路;装置容量在5kW以上,额定直流电压有较高时,

    30、多采用三相桥式整流电路。整流电路选择的原则:整流器开关元件的电流容量和电压容量必须得到充分利用;整流器直流侧的纹波越小越好,以减小整流直流电压的脉冲分量,从而可以完全省去或减少平波电抗器的容量;应使整流器引起的网侧谐波电流,特别是幅值较高的低次谐波电流越小越好,以保证整流器有较高的功率因数和减小对电网的干扰;整流变压器的容量应得到充分利用,要求变压器的等值容量S尽可能的接近直流容量P,并避免产生的磁通直流分量。3.2 计算整流变压器的参数整流变压器参数的计算有:变压器二次侧线电压、电流的计算;变压器一次侧线电压的确定及线电流的计算;变压器一次侧、二次侧容量计算及等值容量的计算。3.3 选用冷却

    31、系统冷却系统设计包括发热计算和冷却系统的选用。3.4 开关元件的选用与计算开关元件的参数计算及选用原则:计算每桥臂器件的正反工作峰值电压;计算每桥臂器件的电流;根据整流器的用途、使用场合及特殊要求,确定电流和电压的安全裕量系数;根据提供的器件参数,综合技术经济指标选用器件或决定器件的串并联数量。3.5 保护系统的设计保护系统是整流器装置的重要组成部分,其功能是在线监测装置各点的电流、电压参数时,及时发现并切除故障,防止故障进一步扩大。保护系统主要包括过电压、过电流和负载短路保护,以及抑制电压电流上升率。3.6 主要部件和器件的计算及选用主要部件和器件的计算及选用主要包括:平波电抗器的计算;触发

    32、器的选用;确定电压、电流检测方式;电压调节器设计。3.7 单相桥式全控整流及有源逆变电路的设计经上述分析,设计出单相桥式整流及有源逆变电路图,如下图所示:图3.1 单相桥式全控整流及有源逆变电路图4 单相桥式全控整流及有源逆变现象的观察4.1 单相桥式全控整流的观察将MCL-型实验台上“触发选择开关”拨至“锯齿波”,同步变压器原边绕组接220V交流电压。将锯齿波触发电路的输出脉冲端分别接至全控桥中相应晶闸管的门极和阴极,并将主控制屏上的组桥触发脉冲开关拨向“断开”或使Ublf开路不接线。调节锯齿波触发电路中的移相调节电位器RP1,使Uct= 0,调节偏移电位器RP2,使= 150。保持Ub不变

    33、,逐渐增加Uct,在= 090的范围内,做单相桥式全控整流电路带电阻电感负载实验,在=30,60,90时,用示波器观察、记录整流电压ud、晶闸管两端电压uT的波形,并记录U2、Ud的数值。4.2 单相桥式有源逆变的观察断开电源,将开关S拨向有源逆变直流电源端,调节Uct,将移至150。合上主电路电源,在=90,120,150时,用示波器观察并记录ud、uT的波形,并记录U2、Ud的数值。表4.1 实验数据表306090120150U263.8V63.8V63.8V63.8V63.8VUd(记录值)49.6V28.5V0V-28.5V-49.6VUd(计算值)49.73V28.71V0V-28.

    34、71V-49.73V4.3 逆变颠覆现象的观察调节Uct,使=150,合上主电路电源,观察ud波形。继续减小Uct,此时可观察到逆变输出突然变为一个正弦波,表明逆变颠覆。当关断电源开关,使脉冲消失,此时,也将产生逆变颠覆。用示波器观察逆变颠覆现象,记录逆变颠覆时的ud波形。5 单相桥式全控整流及有源逆变的仿真5.1 MATLAB软件简介MATLAB软件界面图MATLAB是矩阵实验室(Matrix Laboratory)的简称,是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部

    35、分。MATLAB和Mathematica、Maple并称为三大数学软件。它在数学类科技应用软件中在数值计算方面首屈一指。MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且mathwork也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。在新的版本中也加入了对C,FORTRA

    36、N,C+ ,JAVA的支持。可以直接调用,用户也可以将自己编写的实用程序导入到MATLAB函数库中方便自己以后调用,此外许多的MATLAB爱好者都编写了一些经典的程序,用户可以直接进行下载就可以用。MATLAB 产品可以用来进行数值分析、数值和符号计算、工程与科学绘图、控制系统的设计与仿真、数字图像处理技术、数字信号处理技术、通讯系统设计与仿真、财务与金融工程。 MATLAB 的应用范围非常广,包括信号和图像处理、通讯、控制系统设计、测试和测量、财务建模和分析以及计算生物学等众多应用领域。附加的工具箱(单独提供的专用 MATLAB 函数集)扩展了MATLAB环境,以解决这些应用领域内特定类型的

    37、问题。此高级语言可用于技术计算、此开发环境可对代码、文件和数据进行管理、交互式工具可以按迭代的方式探查、设计及求解问题、数学函数可用于线性代数、统计、傅立叶分析、筛选、优化以及数值积分等、二维和三维图形函数可用于可视化数据、各种工具可用于构建自定义的图形用户界面、各种函数可将基于MATLAB的算法与外部应用程序和语言(如 C、C+、Fortran、Java、COM 以及 Microsoft Excel)集成、不支持大写输入,内核仅仅支持小写。5.2 Simulink简介Simulink是MATLAB最重要的组件之一,它提供一个动态系统建模、仿真和综合分析的集成环境。在该环境中,无需大量书写程序

    38、,而只需要通过简单直观的鼠标操作,就可构造出复杂的系统。Simulink具有适应面广、结构和流程清晰及仿真精细、贴近实际、效率高、灵活等优点,并基于以上优点Simulink已被广泛应用于控制理论和数字信号处理的复杂仿真和设计。同时有大量的第三方软件和硬件可应用于或被要求应用于Simulink。Simulink是MATLAB中的一种可视化仿真工具, 是一种基于MATLAB的框图设计环境,是实现动态系统建模、仿真和分析的一个软件包,被广泛应用于线性系统、非线性系统、数字控制及数字信号处理的建模和仿真中。Simulink可以用连续采样时间、离散采样时间或两种混合的采样时间进行建模,它也支持多速率系统

    39、,也就是系统中的不同部分具有不同的采样速率。为了创建动态系统模型,Simulink提供了一个建立模型方块图的图形用户接口(GUI) ,这个创建过程只需单击和拖动鼠标操作就能完成,它提供了一种更快捷、直接明了的方式,而且用户可以立即看到系统的仿真结果。Simulink是用于动态系统和嵌入式系统的多领域仿真和基于模型的设计工具。对各种时变系统,包括通讯、控制、信号处理、视频处理和图像处理系统,Simulink提供了交互式图形化环境和可定制模块库来对其进行设计、仿真、执行和测试。构架在Simulink基础之上的其他产品扩展了Simulink多领域建模功能,也提供了用于设计、执行、验证和确认任务的相应

    40、工具。Simulink与MATLAB® 紧密集成,可以直接访问MATLAB大量的工具来进行算法研发、仿真的分析和可视化、批处理脚本的创建、建模环境的定制以及信号参数和测试数据的定义。Simulink具有丰富的可扩充的预定义模块库,交互式的图形编辑器来组合和管理直观的模块图,以设计功能的层次性来分割模型,实现对复杂设计的管理,通过Model Explorer 导航、创建、配置、搜索模型中的任意信号、参数、属性,生成模型代码,提供API用于与其他仿真程序的连接或与手写代码集成,使用Embedded MATLAB 模块在Simulink和嵌入式系统执行中调用MATLAB算法,使用定步长或变步

    41、长运行仿真,根据仿真模式(Normal,Accelerator,Rapid Accelerator)来决定以解释性的方式运行或以编译C代码的形式来运行模型,图形化的调试器和剖析器来检查仿真结果,诊断设计的性能和异常行为,可访问MATLAB从而对结果进行分析与可视化,定制建模环境,定义信号参数和测试数据,模型分析和诊断工具来保证模型的一致性,确定模型中的错误。5.3 单相桥式全控整流及有源逆变的仿真模型5.3.1 仿真模型模块介绍1. 交流电源图5.1 交流电源图标提取路径:SimulinkSimPoweSystemElectrical SourcesAC Voltage Source2. 直流

    42、电源图5.2 直流电源图标提取路径:SimulinkSimPoweSystemElectrical SourcesDC Voltage Source3. 变压器图5.3 变压器图标提取路径:SimulinkSimPoweSystemElementsLinear Transformer4. 晶闸管图5.4 晶闸管图标提取路径:SimulinkSimPoweSystemPower ElectronicsThyristor5. 脉冲信号发生器 图5.5 脉冲信号发生器图标提取路径:SimulinkSimulinkSourcesPulse Generator6. 负载电阻图5.6 负载电阻图标提取路径

    43、:SimulinkSimPoweSystemElementsSeries RLC Branch7. 电压测量图5.7 电压测量图标提取路径:SimulinkSimPoweSystemMeasurementsVoltage Measurement8. 电流测量图5.8 电流测量图标提取路径:SimulinkSimPoweSystemMeasurementsCurrent Measurement9. 选路器图5.9 选路器图标提取路径:SimulinkSimulinkSignal RoutingSelector10. 示波器图5.10 示波器图标提取路径:SimulinkSimulinkSinks

    44、Scop5.3.2 仿真模型的设计 将单相桥式全控整流电路的Matlab仿真模型的负载端添加一直流电源DC100V即成为单相桥式全控整流及有源逆变仿真模型。如下图所示:图5.11 单相桥式全控整流及有源逆变仿真模型5.3.3 仿真模型模块的参数设置 对于工业交流电,其频率f=50Hz,周期T=1/f=1/50=0.02s,半周期T/2=0.01s。1. 交流电源 正弦交流电压的模块的参数设置对话框如图所示,参数“Peak amplitude”是正弦电压峰值振幅,单位为伏特(V);参数“Phase”是正弦电压的初相角,单位为度();参数“Frequency”是正弦电压的角频率对于的频率f,单位为

    45、赫兹(Hz);参数“Sample time”是采样时间,单位为秒(s),默认值0标识交流电源为连续源;在测量“Measurement”下拉选择栏里选测量电压还是不测电压。在参数设置对话框中设置如下:“Peak amplitude”幅值设置为220V,“Phase”初相角设置为0度,“Frequency”频率设置为50Hz,“Sample time”采样时间设置为0(默认值0表示该交流电源为连续源) 图5.12 交流电压的模块的参数设置对话框2. 直流电源 参数设置对话框,图中只有两项参数设置内容,“Amplitude”栏下输入其直流电压幅值,单位为伏特(V),在测量“Measurement”下

    46、拉选择栏里选择测量电压还是不测。在参数设置对话框中设置如下:“Amplitude”直流电源设置为220V图5.13 直流电压的模块的参数设置对话框3. RLC元件 在RLC元件参数设置对话框里,“Btanch type”右侧的下拉窗口,可选择RLC元件的各种组合;在参数“Resistance”下的空白窗口里,输入电阻的欧姆数;在“Inductance”下输入电感的亨利数;在“Capacitance”下输入电容的法拉数;还可以在“Set the initial inductor current”前的空白窗口里选即设置电感的初始电流,在“Set the initial capacitor volt

    47、age”前的空白窗口里勾选即设置电容的初始电压,并在“Measurements”右侧下拉的窗口对RLC支路进行电压和电流的测量:Branch voltage、Branch current、Branch voltage and current或不测量:None。在参数设置对话框中设置如下:“ Branch type”设置为RL,“ Resistance”设置为2,“ Inductance”设置为0.01H图5.14 RLC元件的模块的参数设置对话框4. 晶闸管 晶闸管的模型图标如图所示,晶闸管模型有两个输入端与两个输出端,第一个输入端与输出端是晶闸管的阳极端(a)与阴极端(k)。第二个输入端(g)是门


    注意事项

    本文(单相桥式全控整流及有源逆变电路的实现研究与仿真设计.doc)为本站会员(精***)主动上传,沃文网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知沃文网(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服点击这里,给沃文网发消息,QQ:2622162128 - 联系我们

    版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,如有知识产权人并不愿意我们使用,如有侵权请立即联系:2622162128@qq.com ,我们立即下架或删除。

    Copyright© 2022-2024 www.wodocx.com ,All Rights Reserved |陕ICP备19002583号-1

    陕公网安备 61072602000132号     违法和不良信息举报:0916-4228922